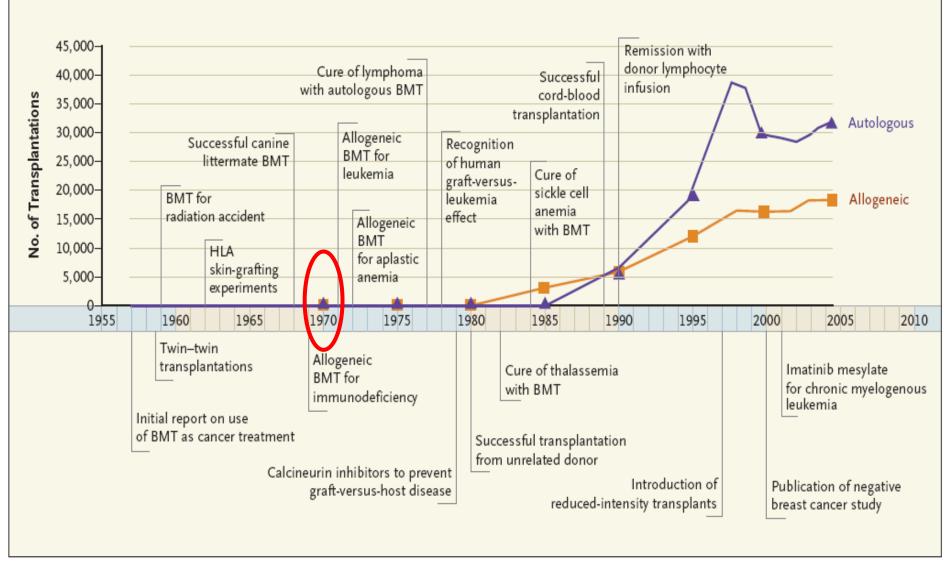
Inherited disorders – management and follow up

AR Gennery


Chair, IEWP

Newcastle University & Great North Children's Hospital, Newcastle upon Tyne, UK

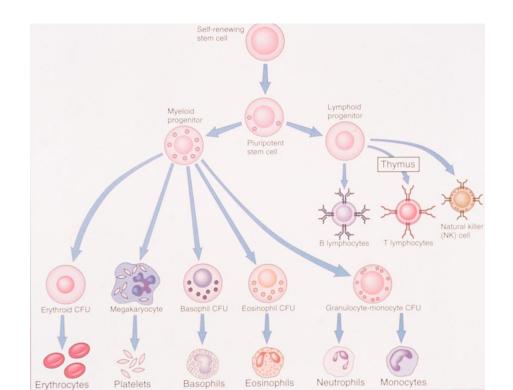
Valencia, Spain 4th April 2016

Introduction

- Inherited disorders (PID)
- What data matters to inform us of outcomes?

Timeline Showing Numbers of Bone Marrow Transplantations and Advances in the Field, 1957–2006.

BMT denotes bone marrow transplantation, and HLA human leukocyte antigen. Data are from the Center for International Blood and Marrow Transplant Research.


Immunodeficiency

'a <u>failure</u> to achieve immune function to provide <u>efficient</u>, <u>self-limited host defence</u> against the biotic and abiotic environment while <u>preserving tolerance to self</u>.'

Casanova et al. J Allergy Clin Immunol 2005

What is Goal of Treatment?

- Safe
- Correction of defect
- Long term immune reconstitution
- No long term side effects

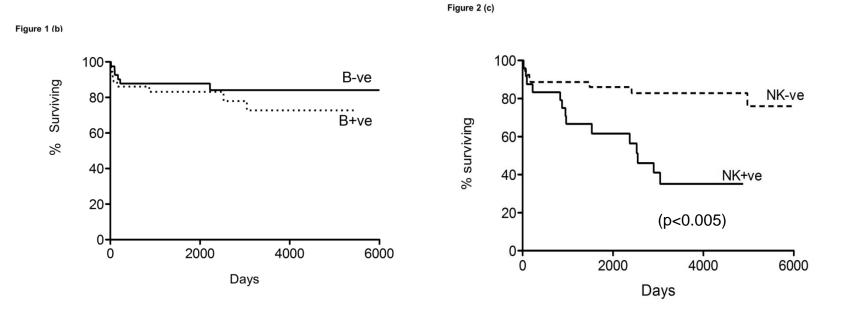
Aim of HSCT

- to provide normal hematopoietic stem cells, facilitating correction of the genetic defect
- Stable donor engraftment
 - Partial or full ablation of recipient
 - Chemotherapy, antibody, GvM
- No Graft versus tumour
 - GVHD damages thymus
 - Stable mixed chimerism can lead to cure
- Good quality immune reconstitution
- Longterm quality of life

Severe Combined Immunodeficiency

• Severe Fatal by age 1yr

Combined T + B lymphocyte failure


Incidence 1:30 - 50000 live births

Issues to consider in SCID HSCT

- Genetic type (CgC does better than RAG)
- Infection better if no infection
- Donor which is best?
- Chemotherapy conditioning ?needed
- Is immunity durable?
- What about quality of life?

Which Phenotype Does Best?

Transplant survival outcomes for T⁻B⁺ and T⁻B⁻ SCID were not statistically different

Event Free Survival was 81% for NK-SCID vs 42% in the NK+ve group

Severe Combined Immunodeficiencies

Defect

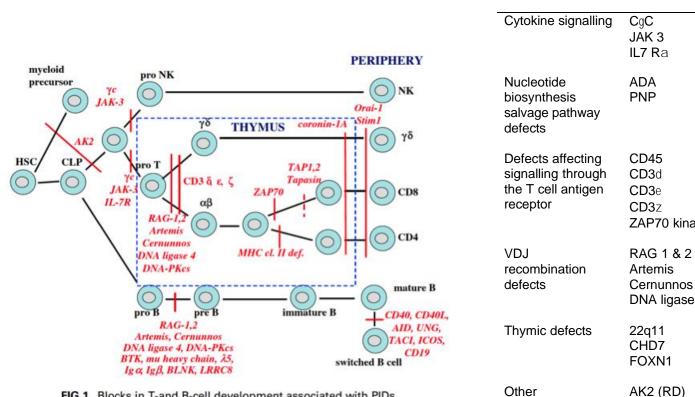


FIG 1. Blocks in T-and B-cell development associated with PIDs.

Notarangelo LD. J Allergy Clin Immunol 2010;125:S182-S194

nthesis le pathway s	PNP	AR	T _{low} B _{low} NK _{low}
ts affecting ling through cell antigen or	CD45 CD3d CD3e CD3z ZAP70 kinase	AR AR AR AR AR	- + - - + - - + - - + + + + + (absent CD8)
bination s	RAG 1 & 2 Artemis Cernunnos DNA ligase 4	AR AR AR AR	+ + T _{Iow} B _{Iow} NK+ T _{Iow} B _{Iow} NK+
c defects	22q11 CHD7 FOXN1	Sporadic/AD Sporadic/AD AR	T-B+NK+ T-B+NK+ T-B+NK+
	AK2 (RD) MHC class II	AR	(+ myeloid dysfunction)
	deficiency ORAI1	AR AR	+++ (absent CD4) Ca-dependent T cell activation
	STIM1	AR	

Inheritance

XL

AR

AR

AR

Gene Defect

T,B, NK Cells

T_{low} B_{low} NK_{low}

- + -

- + -

- + +

Function of Thymus

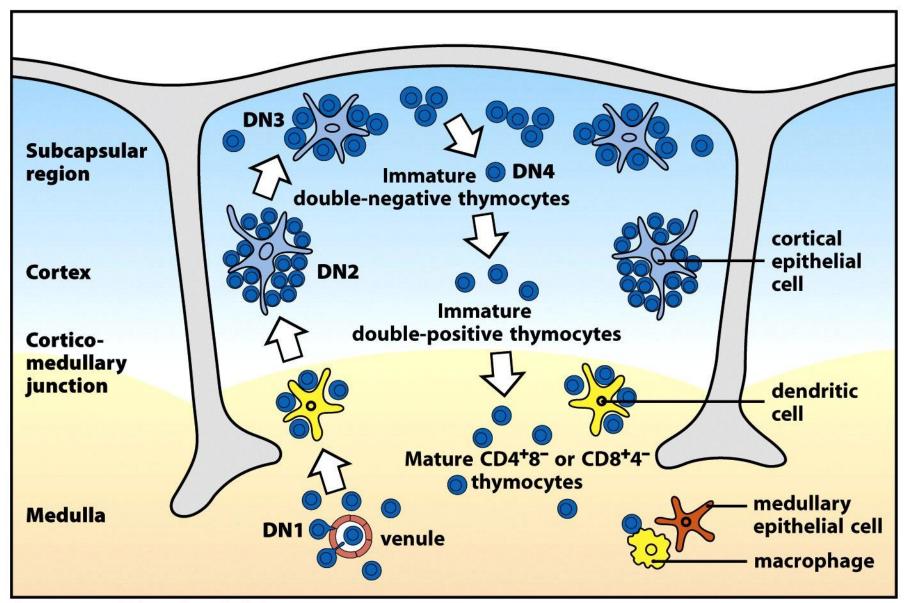
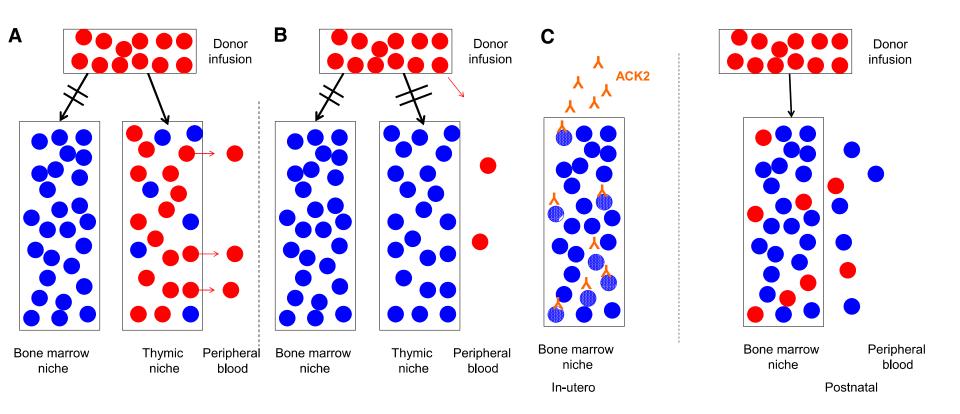
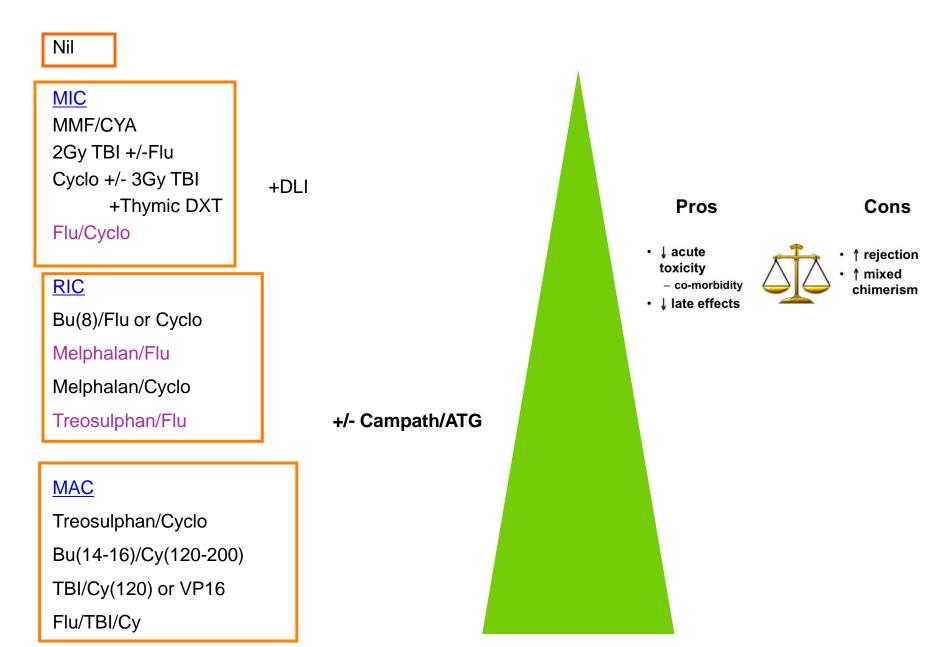
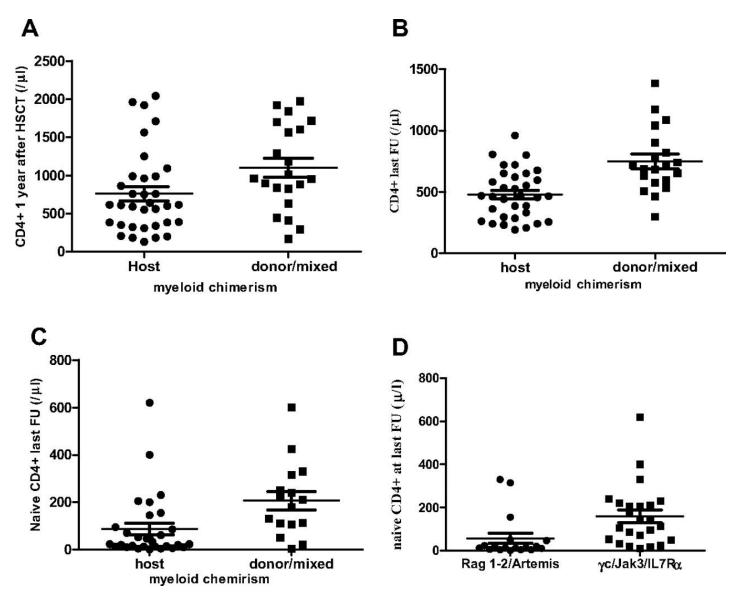




Figure 7-21 Immunobiology, 7ed. (© Garland Science 2008)

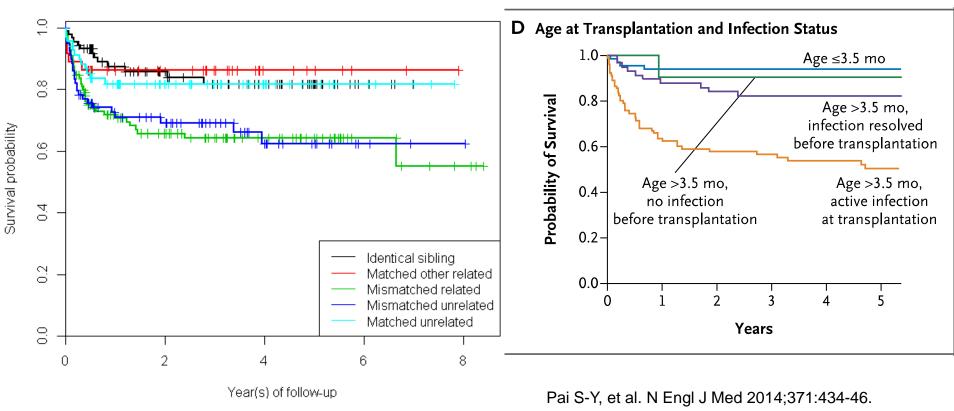


Gennery AR, et al Blood. 2014;12:838-40

A hierarchy of conditioning intensity

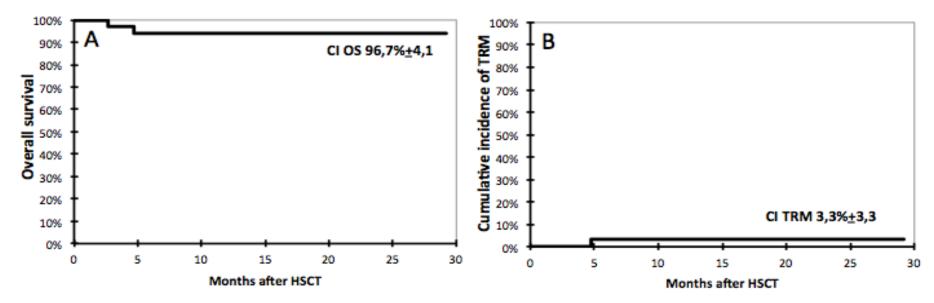
Engraftment of donor-derived myeloid cells correlates with a higher CD4+ T-cell count (1 year after HSCT and at last follow-up) and higher naive CD4 T-cell counts.

Neven B et al. Blood 2009;113:4114-4124


Immune Reconstitution

Recipient B cells from X-SCID/JAK3-deficient patients failed to produce IgM or IgG following CD40L/IL-21 stimulation, compared to donor B cells. IgM, but not IgG was produced from recipient B cells following stimulation with CpG

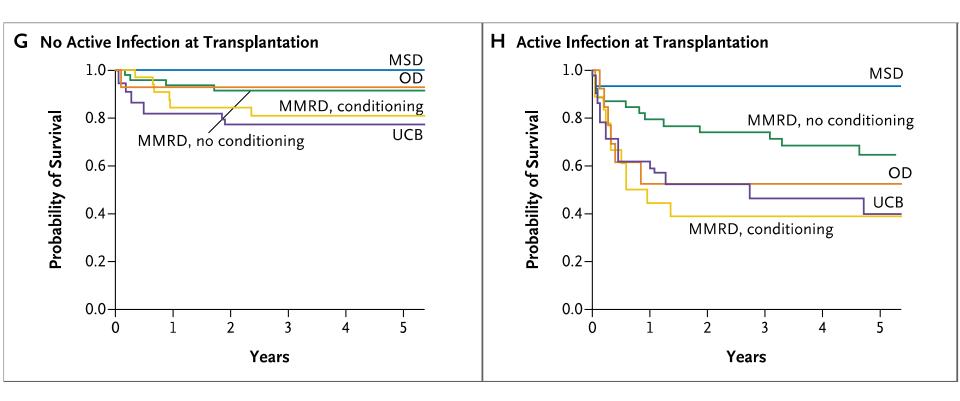
Recher M, et al Blood 2011;118:6824


Outcome of HSCT for SCID

Survival by donor type

SCETIDE 2015

Federal Research Center for Pediatric Hematology, Oncology and Immunology – Moscow, Russia



TCR $\alpha\beta$ depletion in PID – 37 patients

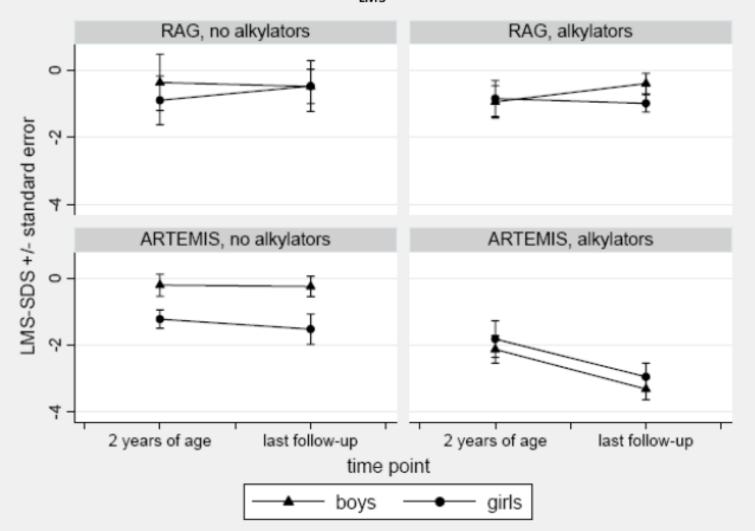
A – probability of overall survivalB - cumulative incidence of transplant-related mortality

Balashov D et al, Biol Blood Marrow Transplant 2015

Effect of infection and conditioning on outcome - SCID

Late Effects - SCID

	Artemis (n=47)	RAG (n=45)	
overall	33 (70%)	11 (24%)	p<0.001
Severe or recurrent infections	16 (34%)	6 (14%)	p<0.05
cGvHD or autoimmunity, - inflammation	14 (30%)	8 (18%)	ns
miscellaneous events	7 (15%)	0	p<0.01
growth < 3rd percentile	23 (49%)	4	p<0.001
nutritional support	10	2	p<0.01
dental abnormalities	10 (21%)	0	p<0.01
sequelae of pre HCT morbidity	4 (10%)	2	ns


Factors associated with late complications

				•
	IRR (95% CI)	Р	alRR (95% CI)	Р
Molecular diagnosis (Artemis)	4.4 (2.5-7.7)	<0.0001	3.2 (2.1-4.9)	<0.000 1
Viral infection prior transplantation	2.2 (1.1-4.3)	0.02	1.7 (1.2-2.6)	0.008
Myeloablative conditioning	2.0 (1.0-3.8)	0.05		
Use of alkylators	3.0 (1.6-5.6)	0.001	3.1 (2.0-4.9)	<0.000 1
Type of donor		0.007		
MSD	1			
MFD	1.0 (0.3-3.)	1.0		
MMFD	1.8 (0.5-6.2)	0.4		
Haplo	3.5 (1.5-9.8)	0.001		
MUD	1.2 (0.3-4.6)	0.8		
Retransplantation	2.3 (1.1-4.8)	0.03		
Boost	2.6 (1.3-5.3)	0.009		
Additional procedure	3.2 (1.7-5.9)	< 0.0001	2.0 (1.3-3.0)	0.001
IVIG requirement	3.0 (1.7-5.5)	<0.0001	1.9 (1.2-3.0)	<0.000 1

Factors associated with growth retardation & nutritional support

		IRR (95% CI)	Р	alRR (95% CI)	Р
→	Molecular diagnosis (Artemis)	4.5 (2.5-8.1)	<0.0001	4.2 (2.6-6.7)	<0.000 1
	Viral infection prior HCT	2.2 (1.1-4.4)	0.03	1.9 (1.3-2.9)	0.003
	Ulcers	2.2 (0.9-5.4)	0.07		
	Type of conditioning		0.003		
	No or IS only	1			
	Low Busulfan dose	0.9 (0.3-2.8)	0.8		
	High Busulfan dose	3.1 (1.5-6.5)	0.002		
	Myeloablative conditioning	3.2 (1.7-6.3)	0.001	2.9 (1.7-5.1)	<0.000 1
	Use of alkylators	3.6 (1.8-7.0)	< 0.0001	2.4 (1.4-4.3)	0.003
	Haploidentity	3.6 (2.0-6.7)	<0.0001		
	Additional procedure	2.5 (1.3-4.8)	0.005		
	IVIG requirement	2.2 (1.2-4.3)	0.02		

Late Effects

Conclusion

- Inherited diseases have different challenges to malignant disorders
- Successful HSCT is curative
- GvHD is to be avoided
- Different diseases have different requirements for successful outcome
- Measuring 'success' requires an understanding of the disease

Conclusion

- Different parameters required depending on disease, to measure success
- Long-term outcomes important detailed specific data collection required
- Communication between clinicians and data managers/registries critical if useful information is to be gathered