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This document explains some of the relevant methodolo-
gical issues involved in planning a clinical study using
survival and time-to-event outcome data, particularly in
the field of haematopoietic stem cell transplantation, and
indicates the appropriate statistical methods to use for the
analysis. As the majority of these methods are commonly
used in survival and event-history analysis, this document
discusses their potential and limitations with reference to
common SCT research situations. Some reference is given
to methods, recently appearing in the literature that may
be capable of handling complex investigations. These
guidelines also address various practical issues, such as
recoding or transforming variables in regression models or
reporting results.
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Target audience: The Statistical Guidelines are a reference
for all studies of the European group for Blood and
Marrow Transplantation (EBMT). Additionally, they may
be useful to a more general community of researchers in
stem cell transplantation (SCT), or in any field requiring
the analysis of time-to-event data, as well as to anyone
involved in clinical research, including statisticians, statis-
tical analysts and clinical investigators. It is assumed that
the reader has some elementary understanding of statistics
and/or experience in clinical research.

Suggestions on how to use this document

This document is suitable for statisticians at all levels of
expertise. However, these Guidelines do not replace text-

books addressing survival analysis or the extensive
literature on traditional and more recent methods of
analysis (reading suggestions are provided throughout the
document). These Guidelines are intended to present one
view on interpreting the most common methodological
issues encountered in SCT research, and to promote a
unified approach for EBMT studies.

Clinical investigators involved in study planning or who
are more generally interested in methodological issues
might wish to restrict themselves to Chapters 1 and 2.
Those sections marked with asterisks (*) address more
complicated issues, and may be initially skipped. Addi-
tional topics of general interest for planning and interpret-
ing studies are addressed in those sections of the remaining
chapters marked with a circle (1).

In our experience, all professionals involved in the
acquisition and reporting of data and in the publication
phase of research are interested in the general ideas and
concepts contained in this document. We therefore hope
they will find the Guidelines as a whole useful, particularly
Chapter 1, Sections 2.1 and 2.3, and Chapter 3, which are
dedicated to illustrating the most common methods for
descriptive analysis, preliminary study phases and the
reporting of results.

To support non-statisticians in performing these analyses
in practice, the Appendix provides a list of commands and
procedures for implementing the basic statistical methods
in R, SAS and SPSS.

On a final note, although some parts of this document
are rather technical, we avoid almost entirely any discus-
sion of theoretical issues and make an effort to present all
arguments in a manner that is accessible to readers of all
backgrounds. Some mathematical formulas are given; these
are not essential (and can thus be skipped), but they might
be useful for comprehension and are presented within the
context of purely intuitive remarks.

1. General and introductory issues

1.1. Objects of interest in SCT research
Haematopoietic SCT is used for the treatment of several
different diseases, and the object of interest in any EBMT
study may therefore vary depending on context. Generally
speaking, of greatest interest is the relationship between
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patient characteristics or treatments and a clinical outcome,
usually the occurrence of an event and the time between
transplantation and when the event occurs. Apart from
outcomes that are treatment- or disease- specific, there are
several common objects of interest that will be presented in
Chapter 2, including overall survival (OS), relapse in-
cidence and relapse-free survival (RFS). In this section, we
introduce some of the concepts (and terminology) in very
general and intuitive terms.

The duration of survival is an object of interest in most
transplant studies. In Chapter 2, we will see that even when
the object of interest is clear, a formal definition requires us
to specify the time of ‘origin’ and the time the clock stops,
as well as to create an indicator to determine whether the
event of interest actually occurred. In fact, the observation
itself takes place during a specific time interval called
follow-up; if the follow-up period is not sufficiently long,
some patients may be alive on the last occasion they are
seen, but their exact total survival time (the information of
interest) will not be known. These are not ‘missing values’,
however, because we actually do have some information
regarding the total survival time. If, for example, the
patient was last seen x months after transplantation, we
know that the time-to-death value is larger than x. This
type of ‘incomplete’ observation is termed censored, and
the field of statistics that processes this type of data is called
survival analysis.

Censoring and the methods of standard survival analysis
do not exhaust the statistical framework that any investi-
gator in SCT should be aware of. Often, the event of
interest is not death, which sooner or later occurs in every
patient, but rather events that may or may not occur at all,
depending on whether some other event occurs before the
one of interest. If we are interested in the recurrence of a
disease in patients who are in remission at the start, we may
observe recurrence in many of them with a sufficiently long
follow-up, but we may also have patients who die in
remission without prior recurrence. In the latter case, the
object of interest, time to recurrence, is not observable.
These two events, recurrence and death without prior
recurrence, are competing risks. The statistical methods
used to analyse the probability of the occurrence of an
event with competing risks are different from those
methods used for standard survival, because the type of
information is different. We will see in Sections 2.1.2 and
2.2.2 that the occurrence of a competing event is not
equivalent to censoring, but in fact the patient stops being
at risk for the event of interest, while in the survival setting
the censored patient remains at risk. Only patients who are
alive at last follow-up with no events occurring (‘failure-
free’) are censored cases in a competing risks situation.

In SCT research, we commonly encounter outcomes with
competing risks, such as relapse (disease recurrence),
haematopoietic recovery (engraftment), the onset of
GVHD, and the achievement of CR (when patients can
be transplanted with active disease, as in lymphoma or
myeloma). All of these events may be precluded by the
occurrence of death, and some may have additional
competing events depending on the context (for obvious
reasons, these Guidelines cannot be specific for each disease
or each particular situation). The analysis of mortality from

a specific cause is another example of a competing risks
situation (dying from any cause other than the one of
interest is a competing risk).

Some of these events are often, or were at least
traditionally, evaluated within a fixed timeframe following
transplantation. Leukocyte engraftment was evaluated
within 30 days, and the case was designated to be acute
GVHD when it occurred within the first 100 days. When
the ending time threshold is very close to the origin, then
the follow-up may be complete up to the day of evaluation,
in the sense that for all patients, it is known whether the
event of interest or a competing event (death and possibly
others) occurred by the time of evaluation, and no patient is
lost to follow-up before the fixed time. In this case, it is
possible to disregard the statistical methods of survival
(competing risks) analysis and use either percentages to
estimate the total incidence or other simple summary
statistics for the analysis (Section 2.2.3).

Finally, in a competing risks situation where the
competing events all represent different causes of failure,
the investigator may be interested in the total probability of
failure, regardless of the cause. Here, the object of interest
is a combined endpoint, the time to the first failure
observed for the patient. For example, RFS is the duration
of survival until the first recurrence or death. Because this
combined failure will certainly occur (and would be
observed during a sufficiently long follow-up), this type of
endpoint can be analysed using the standard methods of
survival analysis.

Survival-like events or events with competing risks that
are observed over time and can be censored are the main
type of outcomes of interest in SCT.1 In Section 2.1, we will
return to the definition of proper endpoints in SCT studies
and their analysis with more comments and examples.

The clinical context and the goals of the study must govern

the definition of the endpoints of interest, which must be

relevant for study objectives, consistent with the disease and/

or treatment being investigated, and feasible with respect to

the data available. To define the endpoint properly, the

statisticians and the clinical investigators should discuss the

clinical framework at length, clarifying the role of the

relevant events during the disease history.

1.2. Type of studies
In SCT, as in any field of medical research, the possibility
of producing evidence for the relationships between
different phenomena depends on the type of study. It is
far beyond the scope of this document to illustrate the
characteristics, potential and limitations of the different

1Other outcome variables in longitudinal studies, such as recurrent events
or repeated measurements, are not common in current SCT research. Thus,
we provide only one example of analysis in a situation characterised by
multiple recurrences of relapse, which will be approached in the context of
multi-state models (the analysis of current leukaemia-free survival).
However, other statistical approaches may be more suitable in other
situations. Methods for longitudinal data and for multivariate survival
outcomes are not illustrated in these Guidelines. Even less common is
analysing a continuous outcome variable, such as the level of WBC.
Methods for the analysis of this type of outcome (t-test, analysis of
variance, multiple regression and so on) can be found in any statistics
textbook. A few are mentioned in Section 3.1.
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type of studies, but extensive discussions may be found in
many classical biostatistics and epidemiology textbooks.
Here, we introduce the major issues for each of three main
study categories. Although we find it convenient to refer to
the same categories and use the same acronyms from other
official EBMT documents,2 the contents of this section
nonetheless generally apply to any retrospective, observa-
tional prospective or experimental (interventional) pro-
spective study.

� A registry-based study (RBS) uses the data available
from the EBMT registry, which retrospectively collects
data for each patient who receives a SCT. In RBS, all
data are (in principle) available at the moment the study
is initiated; in a sense, the data refer to the events that
have already occurred. Thus, this type of study is called
‘retrospective’ with reference to planning and data
collection.3 This study category is similar to those studies
based on case series collected from standard clinical
practice.

� Prospective data collection can be initiated to follow the
disease history of patients from the moment they are
transplanted. The interest may be in patients with a
particular characteristic or diagnosis, or in specific type
of transplantations or treatments. We call these pro-
spective collections (observational) as non-interventional
studies (ONIS or NIS). They are more generally referred
to as ‘observational studies’. The fundamental difference
between a clinical trial and a NIS is that a NIS does not
affect the choice of treatment nor does it influence the
clinical management of the patient, which follow medical
decisions that are made completely independently of
participation in the study (thus, the study is ‘observa-
tional’ in the traditional epidemiological meaning).
Similar to a clinical trial, a NIS also follows a protocol
that fixes the inclusion and exclusion criteria and sample
size, it may indicate a schedule for the clinical assessment
of the status of the patient, and it provides instructions
for data collection.

� Prospective interventional studies, where treatment is
determined by a protocol, are also called prospective
clinical trials (PCTs). These studies are conducted in an
experimental setting, and all aspects of the study,
including treatment (type, dosage), the management of
secondary effects, scheduling and the type of clinical
evaluation, follow a prescribed protocol that maintains
the possibility of changing or stopping treatment
according to individualised medical decisions or the
possible withdrawal of consent by the patient. Thus, in a
PCT, patients are recruited based on their adherence to
the inclusion and exclusion criteria, and the treatment
decision depends on their participation in the study.
Conversely, in a NIS, participation in the study depends
on the decision to treat.

The listed order of these studies describes the increasing
potential of the study to extract from the data evidence of
(causal) relationships between prognostic factors or treat-
ments and outcomes. Of course, this potential also
corresponds to higher costs, longer duration and, possibly,
to reduced feasibility.

The higher potential of clinical trials arises from their
ability to control sources of heterogeneity, which can affect
an analyst’s ability to detect the presence of the relation-
ships of interest, and from the allocation of treatments
according to a protocol that facilitates the establishment of
causal relationships. Strict inclusion and exclusion criteria
control the biological variability of the patients. Treatments
are homogenised in terms of type, dosage, schedule and so
on, and, most importantly, they are assigned independently
of the characteristics and current status of each particular
patient. All assessment methods, as well as the management
of secondary outcomes, follow the same criteria. Moreover,
it is possible to control for certain types of bias through the
use of proper methodological devices, such as randomisa-
tion or blinding.4

The main limitation of RBS is the fact that with the data
collected retrospectively, we almost completely ignore the
motivations behind the choice of treatment, yet it is highly
likely that the choice was related to the patient’s
characteristics and status at the moment the decision was
made. Thus, the effect of the treatment on outcome is
greatly confounded by other factors. For example, we may
observe that patients who received treatment A had better
outcomes than patients who received treatment B, but we
cannot attribute this difference to a causal relationship
treatment–outcome (‘treatment A is superior to treatment
B’) because the explanation could be that treatment A was
assigned to patients who already had a better prognosis
before treatment than those who received B. This limitation
is only partially amendable by applying statistical methods
to ‘adjust’ for patient characteristics; we cannot, for
example, control for unknown, unmeasurable or unmea-
sured factors (more discussion about this problem appears
in Section 1.3).

Although subject to potential bias and confounding
factors, RBS can be very useful for clinical research. The
large amount of available information in the EBMT
registry allows researchers to conduct exploratory analyses
that provide descriptions of patient characteristics and
outcomes, and investigate relationships that may be useful
for generating hypotheses for future research, particularly
when planning prospective observational studies and
clinical trials. The drawback of having large amounts of
information, however, is the potential to overanalyse and
overinterpret the results. It is recommended that any
analysis conducted follows a plan constructed around a
series of hypotheses, while remaining aware of the
methodological limitations, rather than rely on ‘data
mining’ that emphasises whatever statistically significant
results can be found. With respect to the hazards of
misinterpreting significant results, comments on hypothesis
testing can be found in Section 1.4.

2 EBMT internal guidelines for the conduct of studies are available for the
investigators through the EBMT study offices.
3 This terminology might create some confusion for statisticians, as the
perspective is ‘prospective’, that is, longitudinal. In statistics and
epidemiology, the term ‘retrospective study’ is often used with a different
meaning, as for example in the case–control study.

4 The discussion of these issues is beyond the scope of these Guidelines.
EBMT adopts the ICH guidelines for the design of clinical trials.
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Observational studies (NIS) partially control the hetero-
geneity and biases relating to population selection, the
observation of outcomes and data collection, and are
therefore capable of delivering stronger evidence of causal
relationships than RBS. Caution, however, is still required
because a NIS is limited by the fact that all decisions
regarding treatment may depend on several confounding
factors (patient characteristics, intermediate outcomes, the
centre’s attitude and so on). Thus, for a NIS, it is valid to
follow a predetermined plan of analysis and avoid making a
data-driven (P-value-driven) analysis or overinterpreting the
associations detected. Similarly, prudence must be adopted
for any unplanned analyses on the data collected during a
PCT (such as subgroup analyses not foreseen in the study
protocol), and when publishing the results, it should be
specified that they are ‘exploratory’ analyses. This is
necessary because all of the ‘machinery’ of the trial (eligibility
criteria, controlled experimental situation, sample size,
randomisation and so on) was built to examine specific
questions and does not ‘protect’ against confounding or
other forms of bias when looking at other questions.

1.3. Phases of the study
A good study plan consistent with the goals and practical
feasibility of the investigation—with the ability to collect the
necessary information or, in RBS, the current availability of
data—is fundamental to the success of the study. Thus, the
planning phase (Chapter 2) should be conducted with
particular care, even if it requires considerable time and effort.
The statistician is involved at several points in this phase.

First, the investigators must choose the type of study,
and if the choice is a PCT, the type of experimental design.5

Closely related to the choice of study type is the definition
of the outcome variables, or endpoints, the statistical
objects that will be used to measure the object of interest
and to assess its relationship to certain factors. For
example, if the main object of interest is the effect on the
risk of early death of condition A compared to condition B,
then the endpoint could be the OS probability at 1 year
post transplant. In clinical trials (and in NIS), a distinction
is made between the primary endpoint and the secondary
endpoints. The sample size of the study is computed based
on the required power for testing an hypothesis on the
primary endpoint, or on the ability to achieve satisfactory
precision of the estimates (controlling the width of the
confidence intervals).

The type of disease, the treatment, and other clinical and
biological issues largely determine which endpoints should
be chosen. The EBMT releases documents providing
criteria for correct clinical/biological definitions. These
definitions must then be analysed in terms of statistical
rigour, adjusting the analytical methods to align with the
type of endpoint. This study phase thus requires combining
both clinical and methodological issues. Section 2.1
discusses the most relevant aspects for these factors and
provides a brief, insightful introduction of the most
common endpoints used in SCT. It will be seen that for

the statistician working on SCT, it is essential to under-
stand the role that a series of events such as engraftment,
chimerism, GVHD and relapse have on SCT to plan and
conduct a proper analysis. Notice also that the growing
knowledge of the underlying biology and the availability of
new treatments and diagnostic methods require the
statistician to periodically reconsider definitions and
statistical approaches (one example is the case of GVHD,
see footnote 30). Consider also the importance of knowing
the exact information recorded in the database, and in the
case of a data registry such as the EBMT, knowing whether
a definition has changed over time. This is just one example
of the fact that during a clinical study, it is vital to maintain
effective interactions between the responsible physician, the
statistician and the study coordinator.

During the planning phase, investigators also inventory
all factors (patient characteristics, transplant types, and so
on) that may have an effect on the endpoints and/or their
relationship to the main objects of interest. These elements
are taken into account to define the study population,
guarantee a comprehensive description of the population,
and plan an effective approach in controlling for bias and
confounding factors.

A general definition of bias is systematic error; more
specific definitions would require more specific discussions
than what this document is intended to provide. We will
specifically address selection bias where the study population
does not represent the target population at which the study is
aimed, thus generating study conclusions that cannot be
generalised (see Section 2.3). We present several situations of
biased comparisons throughout the document. One major
issue related to bias is confounding, which arises when the
main factor (for example, the subtype of disease, A or B) is
associated with another factor (such as age) that is influential
to the outcome (say OS). Suppose the study aims at
comparing the OS between the two disease groups A and
B, and the analysis shows that survival is worse in group A
than in group B. However, elderly patients have worse OS,
and (it does not matter whether it is natural, the result of
selection criteria or just pure chance) it just so happens that
the percentage of elderly patients is higher in group A than in
group B. Given this scenario, we could not state that there
was an association between disease subtype and OS because
the difference in OS observed between groups A and B could
just as well be attributable to the association between age
(the confounder) and OS. This problem is ideally overcome
by comparing A and B among patients of the same age.

Clinical trials can be designed to reduce bias and
confounding using specific devices such as randomisation
or blinding.6 We focus here on the approaches that can be
applied to any kind of clinical study. Intuitively we have
shown that a comparison between subgroups should
control for a potential confounder by keeping it equal
among the groups. This could essentially be done in three

5 In SCT trials, the comparison between treatments is usually made as
parallel groups. In other settings, popular designs include the crossover, the
factorial design and others.

6 In PCT comparing two or more treatments, randomisation, that is, the
assignment of a patient to a treatment arm following a random process and
independently of the patient’s characteristics, is designed to (ideally)
produce groups similar in terms of known and unknown risk factors.
Blinding is adopted to reduce biased assessments of clinical responses.
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ways7,8 (illustrated with reference to an example where age
is the confounder):

� Restriction would involve reducing the study population
to patients belonging to the same age group. The main
drawback of restriction is the problem of generalising the
conclusions of the study to other age groups. Addition-
ally, if restriction is performed only at the statistical
analysis stage, it implies a reduction in sample size, and
thus reduced power for testing and a lower precision for
estimates.

� In stratification, the population is divided into subgroups
(or strata) with the same or similar value for the
confounder (here, in age groups), and statistical analysis
uses methods developed for stratified data; the compar-
ison between A and B is performed separately in each age
group, and the results are then combined. This approach
requires that the difference in outcome between A and B
is similar in all groups (that is, that there is no effect
modification, or in more statistical terms, no interaction
with age). This approach is preferable to restriction,
provided the latter assumption holds.

� Regression analysis or other more complex statistical
methods (as illustrated in Chapter 4) have the advantage
with respect to stratification in controlling for multiple
potential confounders simultaneously. Regression models
(for example, the Cox model) provide an estimation of the
‘net’ effect on the outcome of each factor x in terms of
the difference that could be attributed specifically to the
variation of factor x alone, all other factors being fixed.
This type of analysis is necessary in the presence of
confounding, but it is also useful if no other prognostic
factor (associated to the outcome) is associated with the
main factor because controlling for all effects reduces
unexplained variability and increases the power to detect
significance for the main effect. Regression models are also
used in studies where the interest is not limited to a single
factor, but the aim is to elaborate a prognostic model.

The need to control for bias and confounding thus
affects the criteria used for the selection of the population
and the choice of the statistical methods used for the
analysis. In RBS, some decisions can also be made after
data collection, as several aspects of the study can be
reviewed and refinements can be made during the
preliminary data analysis phase. In a NIS and in a PCT,
however, all decisions must be made during the planning

phase, both in terms of the definition of the study
population (fixing inclusion and exclusion criteria) and
selecting the statistical analysis plan. The validity and
strength of these studies actually rely on the adherence of
the statistical analyses to the methods originally chosen and
described in the protocol; additional analyses could be
performed, but they should be considered ‘exploratory’ in
nature, and should be interpreted similarly to evidence
obtained from the non-experimental observational studies
(Section 1.2).

The analysis phase (Chapter 3) begins when the data are
available. This phase is illustrated mainly in the context of a
study aimed at comparing subgroups defined according to a
main factor of interest.9

A preliminary descriptive analysis is performed to
confirm the quality and consistency of the data and to
review and refine the study plan,10 identifying any potential
problems resulting from outliers, missing values, unex-
pected associations and potential confounding, and so on.

The analysis then proceeds with a full description of the
observed study population, which is the first result of the
study. The distributions of the main variables of interest are
described separately and in association with other vari-
ables, when relevant. In particular, the subgroups of
interest are compared (usually with significance tests) in
terms of characteristics and outcomes. This is referred to as
marginal (or univariate) analysis, which, as we have just
seen, can be affected by confounding and usually by
heterogeneity. Thus, a more complex adjusted comparison
is usually performed (Chapter 4). In view of the key role of
statistical tests in the analysis and interpretation of results,
we dedicate Section 1.4 to this topic.

The final phase of the study is the presentation of results
in tables and graphs (Section 3.5), and a brief description of
the relevant statistical issues of the study, particularly the
definitions of the endpoint and the methods of analysis
used. Effective communication is, of course, important for
the success of the study. The task of the statistician is to
produce tables and graphs that are precise, comprehensible,
informative and honest, in the sense that they should not
attempt to ‘hide’ some limitation of the study, such as the
presence of missing values, a short follow-up time or the
weakness of the statistical significance of any given
difference. The reader of the article should receive all of
the necessary information to critically appraise the results
of the study and use the derived knowledge appropriately in
his/her research, as well as in clinical practice.

1.4. Remarks on statistical tests
First, it is worth recalling the general construction of a
statistical hypothesis test (although only in simplified terms,

7A further ‘traditional’ possibility is a case-matched study, in which each
patient from group A is matched to one or more patients from group B
who are identical, or nearly so, with respect to one or more potential
confounders. The analysis must apply specific methods for matched pairs.
This method is more difficult to apply than the others, it is less efficient
(using only a part of the available information) and it has less potential
than regression methods for investigating the role of all possible
confounders. Matching does have a function in the propensity score
method (Section 4.4).
8 Recent literature proposes other approaches to the specific problem of
removing potential confounding. In the context of the comparison of two
treatment groups in a non-intention to treat non-randomised study (where,
for example, propensity scores are used, Section 4.4), it is worth mentioning
the use of adjusted survival curves.[42] This method uses inverse probability
weights to create adjusted survival curves to artificially create comparable
groups in terms of all factors that could have influenced the choice of
treatment.

9 A different yet frequent goal of many studies is proposing a new risk
score, or building a ‘good’ prognostic model for outcome prediction in
general. Although this problem can also be approached using the methods
described in this document (regression models), a proper investigation
requires specific validation techniques whose illustration would be beyond
the scope of these Guidelines. Throughout the document, we will identify
issues such as this and suggest texts[28] that can be consulted that illustrate
methods for assessing the predictive value of the model.
10 As indicated, the refinements of the study population (and of the
statistical analysis plan) apply only (or especially) to RBS.
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and only for the case of a two-sided test for the presence of
a difference), after which we will discuss the analysis and
interpretation of results.

A test aimed at proving that there is a difference between
two groups defines two hypotheses, the null hypothesis H0

that states that there is no difference, and the alternative
hypothesis H1 that states that there is a difference.11 The
hypotheses do not refer to the observed data, but rather to
the difference ‘in nature’ or in the general population from
which the observed sample came. The null hypothesis
represents a ‘neutral’ situation, one that is considered to be
true until the observed data strongly indicate that H0 does
not hold. In this case, the null hypothesis is ‘rejected’. A
statistical test is a procedure for ‘gathering support from
the data against the null hypothesis’.

A statistical test is essentially a mathematical procedure
based on a probability model that returns a number, a
P-value, quantifying the probability that, even if in the
theoretical, general population there is no difference (that
is, H0 is true) in the sample we observe due to pure chance
the difference actually observed, or an even larger one.
A very small P-value, then, suggests rejecting the null
hypothesis because it is not supported by the data, so the
smaller the P-value, the stronger the confidence one has
that rejecting H0 is a valid conclusion. When the P-value is
small, the difference observed in the data is said to be
‘significant’.

It may appear thus far that examining the P-value is a
good way of answering a research question regarding the
presence of a difference, but several arguments show that
this is not sufficient. One argument is substantial:
‘significant’ means ‘very unlikely due to pure chance’, but
it does not mean ‘clinically relevant’. Another argument is
technical: the P-value depends on the sample size, and it
decreases with larger samples. When these two arguments
are combined, we could have a very small P-value even if
the difference is negligible in clinical terms. This simple fact
is not taken into account every time the result of a test is
evaluated when only the P-value is considered.

A third argument is related to the application of decision
rules that are based on fixed significance thresholds to
establish whether or not to reject H0. According to a
common practice that we will call ‘the 5% rule’, a Po0.05
is thought to ‘prove’ the presence of a difference, while at
the same time it is not considered worth the effort to further
consider any difference with a P-value 40.05. The 0.05
threshold is the value commonly chosen for the alpha
parameter of the theoretical paradigm of statistical
hypothesis testing, also known as the ‘significance level’
of the test, that represents the probability of a type I error,
which is the probability that the decision rule leads to the
rejection of H0 when H0 is true.

12 Thus, when we apply the

5% rule, we accept that we run a 5% risk of making this
type of error. The rule is acceptable in some cases, but it is
not reliable enough to be the gold standard. It is
recommended that flexibility and critical capacity are
adopted in the interpretation of P-values.

We now have the elements required to recommend the
use of confidence intervals. A 95% confidence interval for a
difference provides more complete information than a
P-value. It shows the minimum and maximum difference
that you can expect in the population consistent with the
observed data and from which you can determine clinical
relevance. Moreover, when the 95% confidence interval
does not include the value corresponding to the absence of
any difference, it means that the P-value of the two-sided
test is smaller than 0.05 (that is, that the difference is
significant at the 5% level). Whenever possible when
reporting subgroup estimates for comparison or the effect
of a factor from a regression model, confidence intervals
should be reported in addition to or in place of the
P-values.

Thus far, we have considered the case of a test on a null
hypothesis, H0, stating that there is no difference. We saw
that a small P-value indicates that the data ‘prove’ (provide
strong evidence of) the presence of a difference. Perhaps
counter-intuitively, because of the construction of statis-
tical tests, a large P-value does not mean that the data
prove the absence of any difference. We can only say that
the data do not provide enough evidence to reject the null
hypothesis that there is no difference. If you are willing to
use the data to demonstrate that there is no difference, or
that there is a negligible difference, then you must apply
specific tests for equivalence or non-inferiority, where the
null hypothesis states that there is a difference larger than a
certain value, and the alternative hypothesis states that the
difference is smaller than that value.

One problematic aspect of hypothesis testing is known as
the problem of multiple testing. In a statistical analysis, we
usually apply a large number of tests and interpret their
results independently from one another. For example, say
that we draw conclusions using the 5% rule to evaluate
significance. This implies that for every test, we run a 5%
(alpha) risk of type I error. Consequently, the total
probability of making at least one such error, that is,
wrongly drawing the conclusion that a difference exists, is
actually higher than the fixed 5%. In other words, the more
tests we perform, the higher the chance that we will make
the wrong conclusion, and the more we increase what we
might call the ‘false discovery rate’. The inflation of type I
error can be controlled using several techniques that may
be more or less easy to understand and/or implement, and
more or less commonly applied and accepted in clinical
research.[1] Apart from using simple approaches such as the
Bonferroni–Holm correction (Section 4.2.3), it is not
possible to suggest solutions for each potential situation.
We can recommend avoiding the overinterpretation of
significance, particularly when the P-values are close to the
usual significance level (for example, P¼ 0.04), the results
are counter-intuitive, or the results are not fully consistent
with other results in the same study or from other studies. It
is fundamentally important to avoid ‘fishing for signifi-
cance’ (such as by testing every possible association) or

11 In a two-sided test, H1 states that there is a difference of whatever sign,
positive or negative. A one-sided test fixes the sign of the expected
difference.
12 Another important parameter whose meaning is worth recalling is the
power (1�beta), which is the probability that the decision rule leads to
‘proving’ the presence of a difference that is actually present in the target
population. Of course, this parameter should be high; it is, however, limited
by the requirement of having a small alpha. The power is a key parameter
in determining the sample size of a study.
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including a continuous variable into a model by looking for
a cut-point that makes it a significant risk factor. A sensible
restriction to a few questions based on clinical and
biological knowledge would provide a reasonable guaran-
tee against finding ‘false positive results’ without using
complicated statistical adjustments.

As a final remark, when investigating the presence of a
difference you may, despite applying the correct statistical
procedure for testing and correctly interpreting the P-value,
still report the wrong conclusion if the study is biased or if
you presume the presence of a causal relationship in a
context where this relationship is not appropriate.

� A statistical test corresponds to probabilistic reasoning. It

is based on a mathematical model and adopts specific

criteria for decision-making; as such, the test does not

return ‘the one and only answer’ to a research question. It

is recommended that mechanised interpretations of the

results, such as relying uncritically on the 5% threshold

rule to draw conclusions, be avoided.

� A small (‘significant’) P-value means only that it is unlikely

that the observed difference is due to pure chance. It does

not mean that the difference is clinically relevant (use

confidence intervals to assess this), and neither does it

imply that there is a causal relationship between the two

phenomena (it may still be possible that the observed

difference is due to the presence of confounding factors or

more generally to some form of bias).

� In particular, consider that significance increases with

sample size. Even a very small difference at the population

level (‘in nature’) will be highly significant in a very large

sample. Additionally, only a very large difference at the

population level will be significant in a small sample.

� A nonsignificant P-value does not prove that there is no

difference; it only indicates that the data do not provide

sufficient evidence to reject the hypothesis that there is no

difference. Use tests for equivalence or non-inferiority to

support a hypothesis of no difference.

� Finally, be aware of the problem of multiple testing. The

more tests you apply in an analysis, the higher the

probability of ‘false discovery’, that is, the higher the risk

that just by pure chance, the data will show a ‘significant’

difference in the population when there actually is none.

2. Planning a study in SCT

2.1. Endpoints: definition
As briefly introduced in Section 1.1, the main objects of
interest in SCT are the occurrence in time of certain events
that are either certain to occur, such as death, or possibly
prevented by the occurrence of competing events, such as
relapse, which has death without prior relapse as a
competing risk. Individual survival times and times-to-
events with competing risks may not yet be observable at
the last follow-up, leading to censored observations.
Defining an endpoint of this type implies fixing when to
start and when to stop the clock that is measuring the time-
to-event of interest. This section will provide more
methodological insight into these issues.

We will make examples out of an SCT context for
malignant diseases, thus introducing commonly aligned

endpoints (OS, RFS, NRM (non-relapse mortality) and so
on). However, we would like to stress that specific
situations may require definitions, or case-specific end-
points, that are different than the ones that we will provide.

2.1.1. Survival times and censoring
Defining OS is relatively simple: it is the duration of
survival from a certain point in time until death. In these
sections, we will for the moment skip the issue of fixing the
starting point, and consider the (first) transplantation as the
time of origin as is normal in most SCT studies. The final
event is unambiguous and certain to occur; the only
uncertainty is when.

Nonetheless, in any study, the duration of the follow-up
period is not infinite, and thus, it is possible that some
patient was alive at the last follow-up and the actual total
survival time is not observable. Another reason for not
observing the actual survival time is loss to follow-up; some
patients, for example, stop having hospital check-ups or
move to other institutions, so they are no longer observed
after a certain time point despite the fact that, in principle,
the observation should be on-going. However, it is
important to remember something that may appear trivial
in this context but which may be less obvious for other
investigations: All cases with insufficient or incomplete
follow-up will experience death—the event of interest—at
some unknown time after the last follow-up. In other
words, at the moment of last follow-up, they are still at risk
of failure. Although we ignore the actual duration of their
survival, we know it will be longer than the duration of
their follow-up. For this reason, their survival time is not
‘missing’, but it is ‘censored’.13 The branch of statistics
called survival analysis proposes methods that correctly
include this incomplete information in the analysis.

The majority of statistical methods for survival data, and
in particular the basic methods illustrated in this document,
rely on the assumption that censoring is ‘independent and
not informative’ with respect to the outcome of interest,14

which, under the perspective of interpretation, means that
being censored at a certain time should not depend on the
risk of experiencing the event(s) at that time or later. This
means that those cases that are still under observation and
at risk of the event(s) of interest at a certain time are
representative of the cases with the same characteristics
that are censored at the same time, at least insofar the
current and future risks are concerned. Violation of this
hypothesis leads to biased results. For example, applying
the Kaplan–Meier estimator (Section 2.2.1) to censored
cases with a higher risk than the uncensored cases leads, as
one might intuitively expect, to an overestimation of the
survival probability.

13What is described in this section is actually right-censoring, observations
that are incomplete in the sense that, if we indicate with T the time to the
event of interest, and with C the time to loss to follow-up, we have T4C.
Situations with left- or interval-censoring are less common in practice, and
the methods for addressing them become more complicated. Refer to
Kalbfleisch and Prentice[43] (Section 3.2) for the theory on different patterns
of censoring.
14 To be precise, this assumption can be slightly relaxed (see Kalbfleisch and
Prentice[43]), but the substantial, interpretative meaning is the one reported
here.
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Common mistakes made with censoring

The nature of censoring implies that censoring observations
at the occurrence of some ‘nuisance’ event different from a
true loss to follow-up must be avoided because those events
usually correspond to a change in the risk of the patient.
The following examples of these common mistakes
introduce issues that will be discussed in the later sections:

� Censoring cases that are dead without relapse to estimate
the probability of relapsing: this is a case of competing
risks, and must be treated with specific methods (see
Sections 2.1.2 and 2.2.2).

� Similarly, censoring a cases case when the cause of death
was different than the specific cause of interest, such as
censoring a non-disease-related death when the aim is
estimating the incidence of disease-related mortality
(again, this is a competing risks problem).

� In a PCT on survival, censoring patients when they go
‘off-treatment’ for toxicity: these patients can be
expected to be at higher risk of death than those who
do not stop treatment for toxicity. See the discussion on
the intention-to-treat (ITT) principle (Section 2.3).

� Censoring patients when they have a second transplant
on the basis that this event modifies the course of the
disease, while you are only interested in survival after
one transplant: usually, second transplants are given for
events such as relapse and graft failure, which identify
patients as being at higher risk for death than those not
requiring a second transplant. The management of
second transplants or other ‘intermediate events’ will
be discussed in Section 2.1.6.

A survival-like endpoint is defined as the time from an

origin to an event that is certain to occur. An observation is

censored when the event of interest was not observed during

the follow-up period; however, the patient is still at risk of the

event, which will occur at some unknown time after the last

follow-up.

When defining an endpoint and what will constitute a

censored observation, ask yourself: ‘Does the fact that the

patient is censored at a certain time indicate that his/her risk

is higher (or lower) than the risk of an identical patient which

is still on follow-up at that time?’ If the answer is ‘no’, then

your definition of the censored observation is correct.

More could be said about censoring, particularly as there
are several potential problems related to the manner in
which follow-up is conducted in real studies. For insights,
see Marubini and Valsecchi,[2] Section 3.5.3.

2.1.2. Competing risks
In Section 1.1, we saw an example of a situation
characterised by competing risks with reference to the
analysis of relapse; this example is useful to introduce more
remarks and further issues.

Example 1: Relapse, non-relapse mortality and RFS.
Patients with acute leukaemia are transplanted when

in CR and may relapse afterwards; patients may also die,
for whatever cause, without ever experiencing relapse.
This latter situation is referred to as non-relapse
mortality, NRM.15 NRM is thus a competing event of

relapse. Relapse and NRM can be seen as two different
causes of ‘failure’; one of them will occur, but only one, and
could be observed during a sufficiently long follow-up
(Figure 1).

Obviously, patients who die without prior relapse will
certainly not experience relapse afterwards: the risk of
relapse after NRM is zero. Equally, although it may seem
counter-intuitive, patients who relapse will certainly not
experience mortality without relapse afterwards;16 these
patients’ risk of NRM is zero after relapse. This highlights
the fact that the occurrence of a competing risk cannot be
considered as censoring for the time-to-event of interest. In
fact, in any time-to-event context, censored patients are by
definition only those still at risk of failure, while when one
competing event does occur, patients are no longer at risk
for the other event.

In the example of relapse and NRM, the censored
observations are those of the patients who at the last
follow-up are alive and have never experienced relapse
before; they are still at risk for both events, one of which
will occur with certainty after the last follow-up at some
unknown time.

Competing risks exist whenever an event of interest can be

precluded from occurring, even with an ‘infinite’ follow-up

period, by another event(s). Treating the time-to-event as a

survival time and censoring at the occurrence of a competing

event is in general improper, and usually leads to biased

results.

Several events of interest in SCT research have compet-
ing risks. Death may prevent observing engraftment,
GVHD and CR achievement (‘death’, in this case, must
be intended as ‘death with no prior event’).17 Depending on
the clinical context (type of disease and so on), there could
be additional competing events, such as second transplant
and perhaps chimerism for engraftment, relapse for
GVHD, progression for CR achievement and others.

Alive
in CCR

Relapse

Dead
without
relapse
(NRM) 

Relapsed or
dead 

Alive
in CCR

The first event is the
observed failure,
the other cannot
occur anymore Competing

risk analysis

Survival analysis
of composite

endpoint (RFS) 

Figure 1 Definition of endpoints.

15 In this context, NRM is more appropriate than TRM, which stands for
transplant-related mortality or, in non-transplant settings, treatment-
related mortality, because TRM suggests classifying the cause of death as
either transplant-related or not, while here we specifically mean ‘death
without ever experiencing a prior relapse’. See also the remarks below in the
‘common mistakes’ subsection.
16 In fact, by NRM we mean mortality without prior relapse, and not
mortality due to causes other than relapse.
17 Although it is customary to report these events in terms of simple
percentages of occurrence and to neglect the competing events, this is often
the wrong approach. Appropriate approaches are discussed in Section
2.2.3.
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Whether an event acts like a competing risk must be
discussed between the statistician and the clinical investi-
gators of the study.

Another context involving competing risks is the analysis
of the causes of death. This type of study is always affected
by the chance that the quality of the information on the
exact cause of death may be insufficient. In some cases,
there is an objective difficulty in attributing the cause of
death. For example, suicide or car accidents could be
classified as belonging to a generic ‘other cause’ category or
they could actually be ‘treatment-related’ causes if they are
attributable to some sort of neuropathy. Thus, it is
advisable to consider a few, relevant and plausible causes
of death for this type of study.

Common mistakes made with competing risks

In the literature of some medical fields, the presence of
competing risks is ignored in the definition of the endpoints
and/or during statistical analysis. In SCT literature, this is
infrequent, but confusion sometimes occurs in the defini-
tions of competing events, or the authors neglect to
describe precisely in the publication which events are
competing and which are the censored observations. For
example, it is possible to find in the literature the same
term, transplant-related mortality (TRM), used for two
different endpoints, one defined as the NRM in our
Example 1 and competing with relapse occurrence, and
the other defined as death attributable to transplant-related
causes and competing with deaths that are non-transplant-
related (in studies on causes of death).

2.1.3. Composite survival endpoints
Example 1 (continued).

Without distinguishing the cause of failure, relapse or
NRM, in this situation it is also of interest to study the time
to relapse or death, whichever comes first. The combined
failure event will be observed with certainty after a
sufficiently long follow-up. Thus, the defined endpoint is
a survival-like outcome, usually called ‘relapse-free survi-
val’ (RFS; Figure 1). This endpoint is meaningful as it
computes the time spent in continuous CR after transplan-
tation. For RFS, patients alive at last follow-up who never
experienced relapse are the censored observations.

RFS is an example of a ‘failure-free’ survival-like
endpoint. It measures the time from a certain origin to a
composite event, the first of two or more events that usually
represents a failure of the therapy, such that at least one of
the events occurs with certainty (notice that when death is a
component of the combined event this requirement is
always satisfied).

Other examples can arise in situations where it may be of
interest to stop the clock measuring the ‘failure-free’
survival time, such as the development of GVHD, fungal
infection, graft failure, no response and so on. In PCT, it
may be necessary to adopt particular definitions for the
endpoints to manage events such as the patient’s failure to
be compliant with the assigned treatments, violations and
drop-offs (see the issue of ITT in Section 2.3). These type of
endpoints may be generically referred to as ‘event-free
survival’ (EFS), or they may receive specific names (‘fungal-
free survival’ and so on). Terminology may in fact generate

confusion if inappropriate or imprecisely described, as
illustrated in the next subsection.

Survival-like endpoints can be defined by means of a

composite failure corresponding to the first of a number of

events such that the failure occurs with certainty in a

sufficiently long follow-up time. They are thus analysed

similarly to OS.

RFS, DFS, PFS y Potential semantic pitfalls

Very often the expressions ‘relapse-free’, ‘disease-free’ or
‘leukaemia-free’ and ‘progression-free’ are used equiva-
lently when considering an outcome such as RFS (defined
in Example 1). However, to avoid confusion, it is necessary
to apply a definition and then use the appropriate
terminology that corresponds exactly to the clinical
situation being analysed, especially as the results of
different studies are often quickly read and compared
without carefully reading the Materials and Methods
sections of the papers.

The term disease-free survival (DFS) is rather common
and is used as an alternative to RFS; thus, it is used for
patients in CR at the start time and with relapse or death as
the final time. In semantic terms, an obvious restriction is
that the word ‘disease’ refers to the specific disease under
investigation (patients may suffer from several diseases
during their lives). The term leukaemia-free survival (LFS)
is used in place of DFS in the studies on leukaemia.
Additionally, it should be specified that DFS extends until
the time of the first recurrence and does not represent the
total time without disease (see the current LFS, Section
2.1.7).

The term progression-free survival (PFS) is proper for
cases where patients are not in CR at the start time,
making progression a failure of interest along with death;
relapse is included, being a subtype of ‘progression’ for
patients who start or reach CR.18 This type of situation
occurs in SCT in diseases such as lymphoma or multiple
myeloma where patients can be transplanted with active
disease, or in autoimmune diseases. Notice that in these
cases RFS could also be analysed by restricting analysis to
patients who were in CR at transplantation or who
achieved CR later by taking into account the delayed entry
(Section 2.1.4).

Common mistakes made with composite endpoints

� When defining an endpoint based on a composite failure,
it is fundamental that the definition is homogeneous and
applicable to all patients included in the analysis. Below
are two examples of incorrect definitions:
� Consider the analysis of a group of patients with either

autologous or allogeneic transplantation where
GVHD is considered a failure in the EFS along with
relapse and death. This is questionable because
GVHD can only be experienced by the allogeneic
patients.

18 There is a semantic problem also for the event competing with relapse/
progression: usually the acronym NRM is used, but more precisely we
should use something like NRPM. In any case, it is important to specify (in
presentations and in Statistical Methods sections) that we mean death
without prior progression or relapse.
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� Again using autologous and allogeneic patients,
consider the case where a second transplantation is
neglected (or censored) for the autologous group and
considered a failure for the allogeneic group. Unless
specific reasons justify this approach, this should not
be done; the same type of event should not be coded
differently in different cohorts of patients.

� Non-homogeneity should also be avoided with respect to
the different timing of events.
� Consider the case where an EFS endpoint is defined to

include no response, relapse (if the patient responded)
and death as failures. However, there are two
treatment groups, and due to different durations of
therapy, the achievement of a response is assessed later
in group A than in group B. The comparison in terms
of EFS is biased, with group B being disadvantaged by
construction.

Competing risks or composite survival endpoints?

In the presence of competing events, the investigator can
usually choose whether to perform a competing risks
analysis, use a composite survival-like endpoint or perform
both analyses.

However, there are exceptions where the use of
composite events are not applicable. For example, when
the event of interest is favourable for the prognosis
(engraftment, achievement of CR), because death is always
a competing event, the combined endpoint (for example,
time to engraftment or death) is not really meaningful. An
EFS endpoint could be defined with ‘failure to achieve
engraftment within time x’ as a component of the event.

When both analyses are meaningful, it is a matter of
relevance and interest, which one should be the main target,
although it is always advisable to use both. Analysing only
the combined endpoint lacks potential for understanding
the phenomena, but only performing the competing risks
analysis misses the necessary synthesis. It is particularly
important to avoid analysing only one of two competing
risks. In Example 1, although the major interest may be the
relapse rate, NRM should not be neglected; it could be a

good choice to present both the cumulative incidence curve
of relapse (estimating the relapse rate per time, Section
2.2.2) and the RFS curve that includes NRM. Stacked
curves (Figure 2) provide an excellent synthesis of the entire
situation.

The choice is particularly relevant in clinical trials where
the number of patients to include is usually based on the
target of evidence required for only one (primary) end-
point. In the case of a comparison of treatments aimed at
reducing the rate of relapse, choosing the latter as the
primary endpoint may be natural, but it is questionable
because—and this is making an extreme example to
highlight the concept—strictly speaking, the best way to
obtain a very low relapse rate would be to have an
extremely high death rate after transplantation. The
problem is realistic, however, when highly toxic treatments
are involved. Of course, we do not mean to imply that
clinical investigators would neglect the risk of mortality,
but we stress the need of taking NRM explicitly into
account during the planning phase. At the very least,
the protocol should make clear statements regarding the
expected non-relapse mortality and/or RFS, and then, the
analysis should check for it. Actually, because it is difficult
to design a trial controlling for two different endpoints,
using RFS directly as a primary endpoint to fix the sample
size may be preferred, but there is a relevant drawback:
Because of the trade-off between toxicity and efficacy, the
two treatments may produce a small difference in terms of
RFS, where one has lower treatment-related death but also
less efficacy in preventing relapse, and the second displays
the opposite. Thus, the expected difference could be small,
and a very large number of patients may be required to
detect it. If the two treatments have similar mortality
instead, then RFS appears to be the best candidate for a
primary endpoint.

2.1.4. When to start the clock*
In Sections 2.1.1 to 2.1.3, we discussed issues that are
related to ‘when to stop the clock’ for studies involving time
to an event of interest. The clock stops at the occurrence of
the event of interest, or of the competing events, or at the
date of last follow-up if no event occurred. But when does
the clock begin?

There is usually a clearly identified situation when the
clinical history of interest begins. For example, in SCT
studies it is the transplant, and in solid oncology it is the
diagnosis or the start of therapy. In a randomised clinical
trial, it should be the date of randomisation. A general
definition for the start time is the first occasion when the
patient is at risk for the event of interest in the context of
the study, and we can consider this to be an ‘entry time’
into this status (‘being at risk’). Because it is natural to
compute the time-to-event as the time elapsed since this
starting situation, we tend to identify the entry time as the
origin (the time zero) of the time scale. However, this is not
always the case. To illustrate this issue, as well as the
relevance of choosing an appropriate method of analysis,
we must consider the concepts of time scales and delayed
entry.

A time scale is a time axis along which the risk of failure
varies. All the methods of time-to-event analysis illustrated

Figure 2 Stacked curves for competing risks setting (relapse and non-
relapse mortality).

EBMT Statistical Guidelines

S10

Bone Marrow Transplantation



in this document use only one relevant time scale for
evaluating the risk of failure: assuming that two ‘identical’
patients assessed at the same time along a given scale
necessarily have the same risk, while the risk is (potentially)
different for another identical patient who is assessed at
another time.

The choice of the time scale is crucial for analyses
because the statistical procedures are based on ranking the
observed failure and censoring times along the reference
time scale and subsequently identifying the risk sets, the set
of individuals at risk at each point in time (the concept is
better illustrated in the example below). The differences in
terms of relative risk at time t that are attributable to
patient characteristics are evaluated among the individuals
belonging to the risk set at that time. If it is possible to
choose between different time scales, this choice affects the
risk sets, thus having an impact on the results of the
analysis.

We will illustrate with an example situation in which
there is a problem with the choice of the reference time scale
and how this problem can be approached.

Example 2: Time scales in the analysis of RFS after
achievement of CR.

In a transplantation setting, the reference time scale is
usually the time since transplant. However, in our example
study, we are interested in RFS and CR is achieved after
transplant, thus we have to consider that the patient starts
being at risk only when CR is achieved. In other words, the
patient enters the status ‘at risk’ at a time E, which is different
from patient to patient and later than the time of transplant.
Obviously, it is not sufficient to exclude from the analysis
those patients who did not achieve CR. All respondent
patients should be excluded until they reach CR, because by
definition they could not experience the risk of relapsing
before CR. This problem can be solved in two ways.

One approach is to re-compute the time-to-failure since
the moment CR was achieved. This is known as the clock-
back approach because the ‘clock’ measuring survival is set

back to zero for all patients at the time they achieved CR
status. Two identical patients thus have the same risk when
evaluated at the same time since achieving CR, even if one
was transplanted 1 month before and the other 2 years
before.19

The second approach20 is to use the time since transplant
as the reference time scale, but acknowledge the delayed
entry in the status of being at risk of failure, which is
achieved by modifying the risk sets as shown below. In
terms of probability distributions, this corresponds to
imposing the condition that the failure time T has to be
larger than the entry time E (in this case, time to CR),
which is called left-truncation.21

We can demonstrate the two approaches with an
example using the data for five patients, as illustrated in
Figure 3. In the case of the clock-back approach, the order
of failure times from the smallest to the largest is tE, tB, tA
and tC (tD is not defined), and the risk set at time t, R(t), is
the set of individuals whose observed failure time is larger
than or equal to t. Thus: R(tE)¼ {A, B, C, E}, R(tB)¼
{A, B, C}, R(tA)¼ {A, C} and R(tC)¼ {C}. Notice that the
dimension of the risk sets decreases in time, with all patients
belonging to the first risk set, and subsequently leaving the
sets for failure (or censoring, although all observations are
complete in this example).

In the case of the left-truncation approach, the order of
failure times from the smallest to the largest is tE, tC, tA (tD)
and tB; and the risk set at time t is the set of individuals
whose entry time E is lower than t and whose observed
failure time is larger than or equal to t. Thus, we have:
R(tE)¼ {C, E}, R(tC)¼ {A, B, C}, R(tA)¼ {A, B} and

Patient A

Patient B

Patient C

Patient D

Patient E

Time since transplant

FailureCR

CR

CR

Failure

Failure

1 2 3 4 5 6 7 8 9

Failure

Left truncation

FailureCR

Time since CR

Failure

Failure

1 2 3 4 5 6 7 8 9

Failure

Clock-back

Failure

Figure 3 Time scale issues: left-truncation and the ‘clock-back’ approach.

19 This is true unless the time between transplant and CR is included among
the covariates.
20 This approach is also sometimes termed clock-forward, especially in the
framework of multi-state models[5].
21 In practice, not all statistical software programs allow the researcher to
apply left-truncation. With this approach, the survival data need to be
arranged in the counting process form, that is, they must be represented as
a triplet (entry time, final time and failure indicator).
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R(tB)¼ {B}. Notice that patients A and B did not belong to
R(tE) because they had yet to enter the condition of being at
risk, at time tC the risk set was larger than at time tE, and
patient D does not enter any risk set because his entry time
E is not observed (he does not achieve CR).

If we erroneously kept the time since transplantation as
the time scale without correcting the risk sets for delayed
entry, the first of them would have been R(tE)¼ {A, B, C,
(D), E}; patients A and B (and D) would thus appear to be
at risk of failure during a period in which they were not
(before achieving CR), which clearly can lead to the wrong
assessment of relative risk.

Delayed entry can occur every time you select patients on

the basis of information that is known at a time later than the

natural origin, or in more general terms, when the condition

of being at risk arises during the follow-up started at the

natural origin. This requires setting the clock back or

applying methods for delayed entry (left-truncation).

Of course, if the time to entry in the risk status is the same

for all patients (for example, being at risk of chronic GVHD

starts at day 100 from transplant when the traditional

definition is applied), then the two approaches return the

same risk sets.

Notice that all transplant histories are actually disease

histories started before transplant, at diagnosis: we usually

apply the clock-back approach and include time from

diagnosis to transplant as a covariate in the analysis.

2.1.5. Creation of outcome variables in practice
Once an endpoint of interest is chosen, new columns must
be created in the database that will specify the outcome
variable in the statistical procedures you will apply. We
present an example, although depending on the method
and on the software used, the inputs or coding required
may be different.

For survival and competing risk situations, we need two
columns, one for the time and another for the status (we
will in fact disregard the issue of left-truncation, which
would require an extra-column for the entry time):

� When the event of interest occurred, the time variable is
equal to the time interval between the origin and the

event, and the status variable is 1; for endpoints with
composite failures, the time variable is computed from
the origin to the first failure that occurred.

� If there are competing risks and a competing event
occurred, the time variable is equal to the time interval
between the origin and the competing event that
occurred, and the status is equal to 2 / 3 / y (one code
number, 2 to k, where you are interested in k competing
risks).

� In both situations, if no event occurred, the time variable
is equal to the time interval between the origin and the
last follow-up, and the status variable is equal to 0
(censored cases).

Example 3: Computing the outcome variables from the
data

The following schema represents the course of the disease
for seven patients in a study with a maximum duration of
18 months. Time is measured in months, the origin is
transplantation, R indicates relapse (all patients were
transplanted while in remission), D indicates death, and A
indicates the date the patient was last seen alive (Figure 4).

The data are:

Patient
id

Relapse
occurred
(no¼ 0,
yes¼ 1)

Time
to

relapse

Death occurred
(vital status;
no¼ alive¼ 0,
yes¼dead¼ 1)

Time to
death or last

contact

1 0 – 1 14
2 0 – 0 18
3 1 8 1 18
4 1 8 0 18
5 0 – 0 10
6 1 4 1 16
7 1 14 0 17

The last two columns represent the status indicator
(1¼ event occurred, 0¼ censored) and time columns for
OS, respectively. In addition, in the following table we
compute the columns necessary to define the outcome for
the RFS, the analysis of relapse incidence and non-relapse
mortality in a competing risks setting, and survival after

2

Time (months)

A

A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 D

R3 D

R4 A

5

R6 D

R7 A

Figure 4 Example 3, computing the columns for the outcome variables.
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relapse. The latter is an example of an outcome with a
different time origin, relapse, so the clock is set back to 0 at
the time of relapse. Patients without relapse are excluded
from the analysis.

Patient
id

Status
indicator

for
relapse

incidence/
NRM

Status
indicator
for RFS

Time
variable
for RFS
or relapse
incidence/
NRM

Status
indicator

for
survival
after
relapse

Time
variable

for
survival
after
relapse

1 2 1 14 – –
2 0 0 18 – –
3 1 1 8 1 10
4 1 1 8 0 10
5 0 0 10 – –
6 1 1 4 1 12
7 1 1 14 0 3

2.1.6. Second transplant and intermediate events in general*
Very often investigators interested in the occurrence of a
certain final event struggle with the statistical management
of other events that occur during the course of the disease.

One situation is when these other events are considered
‘nuisance’ events in the sense that the investigator is not
interested in them, neither as outcomes nor as prognostic
factors, but feels that they affect the object of interest in
some way, and thus wants to disregard their occurrence and
the subsequent disease history. A typical example is the
analysis of the long-term effects of chemotherapy for acute
leukaemia patients at onset when some of them received
allogeneic transplants at some point. A second case is when
the event actually represents a good or bad outcome of the
disease process, and thus, there is an interest in considering
them as competing risks or as components of some
composite EFS, as in many of the examples already seen.
A third case is when the investigator is interested in
understanding whether the disease history is really affected
by the occurrence of an intermediate event, and if so, how.
A typical problem is investigating the role of second
transplants, or the possible change in prognosis when
events such as GVHD or response occur.

Censoring is (usually) a mistake

When an investigator wants to analyse a certain life history,
but feels that the intermediate event causes modifications
with respect to what would have been observed without its
occurrence, the tempting ‘solution’ is to censor the
observation at the time the ‘nuisance’ event occurred. As
was described in Section 2.1.6, the analysis is unbiased only
when the patients remaining at risk are fully representative
in terms of the subsequent risk of failure of those being
censored at the same time. This is hardly the case when
there is censoring at the occurrence of events other than the
event of interest. Consider the following two examples in
the context of oncohematology and SCT:

� In the example of the analysis of the long-term effects on
OS of chemotherapy for acute leukaemia patients at

onset, the investigator applies a censoring at the
administration of allogeneic transplantation with the
argument that due to GVHD, chimerism, and so on, the
transplanted patients are not homogeneous to the rest
after transplantation. Because (usually) transplantation
is given only to patients in CR after induction, as
censored cases they have at that time a lower risk of
death than the remaining population, which includes
patients who are non-responsive at the same time. As a
result of this ‘informative’ censoring, the OS probability
is underestimated.

� In a registry-based SCT study with OS as the main
endpoint, the investigator applies a censoring at the
occurrence of second transplant with the argument that
the interest is only in the outcome of the first transplant.
In the likely case that second transplants are given as a
consequence of an event that has a negative impact on
survival, such as relapse or graft failure, then at the time
of second SCT patients have a higher risk of death than
those who do not require a second transplant at the same
time. As a result of this ‘informative’ censoring, the OS
probability is overestimated.

Generally speaking, the censoring of patients at the time of

second transplant while analysing OS may violate the

requirements of proper censoring. In fact, in the majority of

cases the administration of second transplant is associated

with a particular risk status (high risk of death, if given as

salvage treatment, or low risk of death, when given in CR),

and the censored cases would therefore not be homogeneous

with the non-censored cases. It may be an independent

censoring, for example, in the case of a clinical trial where the

second SCT is given according to randomisation and

independently of the current response/risk status of the

patients.

What to do instead of censoring?

In the example of the analysis of long-term OS from
induction, it is perfectly appropriate to completely neglect
whether the patient received an allogeneic transplant or
not. The fact that the patient survived long enough to
achieve CR and then an allogeneic transplant, thus earning
an additional short-term risk followed perhaps by a
reduction of risk, is part of the treatment history after the
initial induction therapy and contributes to the final
outcome. This reasoning is substantially based on the ITT
principle (Section 2.3).

In the example of second transplants given following
relapse or graft failure, the appropriate perspective may be
to consider second transplantation as an outcome of
interest in itself, representing a type of failure or a surrogate
for failure. In this case, a second SCT can be managed as a
competing risk or as part of a composite failure (Section
2.1.3). The same approach can be used in defining the
endpoint in a clinical trial that prescribes starting a therapy
to prevent relapse according to the levels of certain
biological markers; the initiation of such therapy may be
included among the events indicating failure. Regarding
second transplantation, notice also that it appears appro-
priate to treat it as a failure in all analyses where the unit
investigated is the ‘‘graft’’ and not the patient. This is the
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usual approach in studies on organ transplant or heart
valve implants where the interest is in analysing the
duration of survival with one organ or the duration of
the device, respectively, stopping the clock if and when the
patient receives another organ or device (the ‘life’ of the
organ or device ends). The analysis of engraftment in SCT
actually follows this logic.

Analysing the ‘effect’ of an event

So far in this section, we have seen the intermediate event as
something that in some way terminates a disease history.
However, the changes in the status of the patient that are
associated to (or possibly caused by) the intermediate event
are often objects of interest as prognostic factors. Examples
include the investigation of the benefit of second trans-
plantation or the change in prognosis when the patient
achieves CR or develops GVHD.

A very typical and serious mistake[3,4] is comparing the
outcomes between those patients who experienced the
intermediate event and those patients who did not,
without taking into account the fact that the intermediate
event took place during the follow-up and after the start
of the clock. For example, an investigator compares the
curves of the OS probability from the first transplants of
two subgroups, patients who later received a second
transplant and patients who did not. This mistake
involves a classification of patients based on the
future. All of the patients who died early, and because
of that, could not receive a second transplant automati-
cally belong to the ‘no second SCT’ group, which is thus
disadvantaged by construction. This is an example of time
bias. In these situations, the statistical analysis must in
some way adjust for the fact that to experience an
intermediate event, the patient first has to survive during a
‘waiting time’. The principle is that to perform an
unbiased comparison between patients with and without
the event, it must be done at equal ‘waiting time’.

One approach is to make a landmark analysis, selecting
only the patients still at risk at time x and then defining
and comparing two groups, those who received a second
transplant before time x, and those who did not. This
latter group includes both patients who received a second
SCT after time x and those who received only one
transplant.22 Once the two groups are set, there must be
a proper accounting for the delayed entry either by setting
the clock back or using left-truncation (Section 2.1.4;
because the entry time is the same for each patient, the two
approaches are equivalent). Here, the classification
is not based on the future but on the past (until time x).
The advantage of this approach is that the analysis is
quite simple, and if choosing the clock-back approach it
can be performed using ‘standard’ methods such as
Kaplan–Meier curves and the log-rank test. The disadvan-
tage is that it is rather restrictive with respect to the aims of
the investigation, the comparison may be influenced by the
choice of the time threshold x and the analysis does not
consider the first part of the story of the disease, that is,
early failures.

Another approach is to include the occurrence of the
intermediate event as a time-dependent covariate in the
Cox regression (Section 4.3.3). A time-dependent covariate
is a variable that changes its value over time. For example,
the variable that indicates the occurrence of a second
transplant changes from the value 0 to the value 1 at the
time the second transplant is given, and it is always equal to
zero if a second SCT is not performed. The model allows
the investigator to compare at each point in time those
patients who at that time had a second SCT to those who
did not. This is a more general analysis than with the
landmark approach, and all cases are included.

The limitation of this approach is seen when we study the
effect of several prognostic variables including the occur-
rence of the intermediate event. Some (time-fixed) char-
acteristic at transplant can affect the chance of experiencing
the intermediate event (time-varying variable), and the Cox
model including both variables fails to detect the global
impact of the characteristic because part of its effect is
represented by the occurrence (or not) of the intermediate
event. For example, treatment A produces a higher risk of
death than treatment B but also has a greater chance of
having a second transplant than treatment B, whereas the
latter reduces the mortality. Globally, the effect of
treatment A could be comparable or even superior to
treatment B, but the Cox model returns only an estimated
effect of A assuming that the second transplant was given
(or not given). This limitation is overcome by using multi-
state models.[5,6] With this approach, each part of a disease
history with one or more intermediate events is modelled
using a Cox regression (or indeed, any other estimation
technique), and the results are combined to estimate the
probability of each possible outcome in time. For an
example of the application of both time-dependent
covariates and multi-state modelling in an investigation
on the role of second SCT, see Iacobelli et al.[7] Multi-state
models have high potential, but the application is rather
complicated; we therefore suggest that this approach be left
to statisticians who are experienced in the field. EBMT
guidelines dedicated to multi-state models[8] and an
extensive literature are available. It is also worth mention-
ing an alternative based on dynamic prediction.[9]

Aside from which statistical method is used, it is
important to comment on the interpretation of analyses of
the ‘effects’ of intermediate events. Because these events are
themselves outcomes of the disease process (unless, for
example, they correspond to the administration of treat-
ments given according to a protocol and independent of the
status of the patient at that time), it is hazardous to speak of
causal effects (see also ITT analyses, Section 2.3). For
example, the sentence ‘Second transplant reduced the risk of
death’ suggests the presence of a causal effect, while the
observed benefit could be explained by some type of auto-
selection process such that the ‘fittest’ patients, those having
a lower risk of death, also had higher chances of receiving a
second SCT. A more appropriate sentence would therefore
be a ‘descriptive’ one, such as ‘Patients who received a
second transplant showed a lower risk of death’.

When a ‘secondary’ event occurs during the course of a

disease, there are very few situations where treating it as
22 The time threshold x should be chosen so that the most relevant part of
the information is acquired by time x.
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censoring is either meaningful or appropriate. Instead,

evaluate whether you should ignore the secondary event

under an ITT perspective; treat the secondary event as a

failure in a competing risks setting or as a component of a

combined endpoint; or investigate its role or adjust for its

occurrence using landmark analysis, Cox regression with

time-dependent covariates or multi-state models. In the last

case, be sure to avoid misinterpreting the relationship found

between the intermediate and final event, unless causality is

truly established.

2.1.7. Other issues regarding relapse and competing risks
in general*

‘I am only interested in relapse if mortality did not exist’:

Latent failure times

The analysis of relapse is a typical case in which the
investigator is very much interested in that specific event
and not at all interested in the competing one (mortality
without prior relapse, NRM). This happens in all clinical
contexts where mortality is negligible or otherwise ‘ade-
quately controlled’, at least in the first few years. In
simplified terms, we could say that the investigator would
in some way like to have evidence relating only to relapse,
as if NRM could be eliminated entirely. Early statistical
approaches to event-history data in the presence of
competing risks were in fact based on what was called the
latent failure time approach. In this approach, it was
presumed that there was a ‘hidden’ survival process for
each possible cause of failure, all processes were indepen-
dent (this was a necessary condition as otherwise the model
was not applicable in practice) and only the first failure
occurring among all competing events could be observed.
In other words, even after NRM was observed, the ‘clock’
measuring the time to relapse was continuously running,
only it was no longer visible and the final time to relapse
remained unknown. According to this approach, the real
object of interest in the analysis of relapse is the latent
survival-like endpoint or, in formal terms, the correspond-
ing marginal survival function.23 Apart from practical
limitations, this approach is misleading because a compet-
ing event cannot be eliminated from reality.

‘Relapse is not a permanent status’: Current RFS

While in competing risks analysis the disease history ends
with the occurrence of relapse and endpoints such as RFS
are used to compute the time until first relapse, in certain
frameworks, such as in SCT for chronic myeloid leukaemia
where patients who relapse may achieve CR again, then
have another relapse and so on, it is interesting to evaluate
the probability of being alive without relapse after relapse
occurs for the first time. In the context of leukaemia, this
type of endpoint is known as current LFS,[10–12] and the
object of interest is the probability of being alive and
leukaemia-free at any point in time, regardless of whether
the patient is in first, second or subsequent post transplant

remission. This is an important parameter for evaluating
therapeutic strategies that incorporate planned post trans-
plant treatment of relapse such as DLI. It can be estimated
within the multi-state approach (Section 2.1.6) by building
models for all transitions from CR status to relapse, then to
CR again and so on.

2.2. Endpoints: statistical methods
Depending on the type of endpoint and the objectives of the
study, a large variety of statistical methods are available for
analytical purposes, and new methods and models appear
almost daily in the statistical literature. This section briefly
introduces only the most common methods used and, in
particular, those methods that are currently used by EBMT
statisticians or which are commonly found in the SCT
literature. Specific problems or clinical questions may require
more advanced methods than the ‘standard’ methods
presented here. Apart from a few ‘technical’ aspects, this
section addresses the assumptions, potentials and limits of
each method whose understanding is fundamental for a
critical appraisal of the results of an analysis.

2.2.1. Survival-like endpoints
When the endpoint of interest is a survival time, such as OS
and RFS, the relevant objects that describe this endpoint
are the survival function S(t) and the hazard function h(t)
and their derived quantities. At this point, we will not
illustrate them as mathematical objects with specific formal
properties but will instead focus mainly on their clinical
meaning. For the discussion, we will use the generic words
‘survival’ and ‘death’ (the latter is used instead of failure),
but obviously, what is said here can be generalised to all
failure-free survival endpoints.

Survival function

The survival function S(t) states for each time t the
probability of surviving beyond time t, or the percentage
of patients who are expected to still be alive at time t. At the
time origin, S(0)¼ 1¼ 100%; for increasing t, S(t) de-
creases, and with a long enough follow-up, or theoretically
at infinite time, S(t) decreases to 0, as death is an event that
occurs with certainty.

The complement to 1, 1�S(t), which is sometimes called
the one-minus-survival function (OMS), is simply the
probability of dying before time t, or the cumulative
mortality rate24 at time t.

The survival function is estimated by the Kaplan–Meier
or ‘product-limit’ method. For an example of estimated
survival curves, see Section 3.5.2. Another method that
provides somewhat different estimates is the ‘actuarial’ or
‘life table’ method, which could be used in the case of
grouped (‘discrete time’) survival data.25

23 Recent statistical methods approach the estimation of the marginal
survival function. Such efforts can be found in the work of Fine and
others,[44] who introduced the term ‘semi-competing risks’ for settings
where the role of two events is asymmetric, as it is here where death
prevents relapse (‘truly competing’ events), but the converse is not true.

24 In statistics and epidemiology, ‘rate’ refers to a quantity that is not
interpretable as a probability. However, in these Guidelines we follow the
traditional practice of the medical literature and use this term to in fact
mean ‘probability’.
25 An interesting example of grouped survival data is when it is not known
precisely when the event occurred, but only that it occurred during a certain
period, such as between two different scheduled follow-up times. Useful
remarks can be found in the books by Kalbfleish and Prentice[43] and
Marubini and Valsecchi.[2]
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The time t* where the estimated survival curve is equal to
0.5 (50%) is the median. The interpretation is that half of
the patients die within the median time t*, or that half of
the patients survive at least beyond t*. The majority of
statistical software programs provide the estimated median
with a 95% confidence interval. A more complete synthesis
of the survival curve is a series of estimated survival
probabilities at specific points in time with their confidence
intervals.26 It is also very important to look at the number
of patients still at risk at each time. At the end of follow-up
(that is, at the tail of the curve), there are usually very few
patients still at risk, and in that region estimates may be
highly unreliable. Furthermore, a ‘plateau’ should not be
overinterpreted as the probability of being ‘cured’ (see ‘The
proportional hazards (PH) assumption’). Notice in parti-
cular that if the patient with the longest follow-up has a
failure (is not a censored case) then the Kaplan–Meier
survival curve drops vertically to zero.

Hazard function

The hazard function h(t) provides the ‘instantaneous’ risk
of death at each time t for survivors at that time; that is, it
represents the probability of dying at time t given that the
patient survived up to that time and is also called the ‘force
of mortality’. We could say that while the survival function
provides the clinician with the prognosis for a patient at the
start of the disease history, the hazard function evaluates
the risk of death continuously over time.

There is of course a relationship between the survival
probability and the hazard function. Intuitively, the
probability of surviving beyond t depends on how much
risk you experience from the start to t. The following
formula expresses this concept and introduces the ‘cumu-
lative hazard’ H(t):

SðtÞ ¼ exp �HðtÞf g ¼ exp �
Zt

0

hðuÞdu

8<
:

9=
;

As time progresses, the cumulated hazard increases and the
survival probability decreases, but when the hazard is
higher, the survival function decreases faster. We point out
the fact that the probability of dying within time t depends
uniquely on the hazard of death from 0 to t; the relevance of
this remark will become clear when introducing the relevant
objects in competing risks settings in the next section.

Two groups of patients are usually compared by means
of the hazard ratio (HR):

HRðtÞ ¼ hAðtÞ
hBðtÞ

HR¼ 1 indicates that the risk is the same; HR41 indicates
that the risk is higher in group A, and conversely, HRo1
indicates that the risk is lower in group A. The HR also

provides a quantification of the difference, in percent. For
example, HR¼ 1.2 means that in group A, the risk is 20%
higher than in group B; HR¼ 2 means that in group A, the
risk is double (100% higher) than in group B; and HR¼ 0.7
means that in group A, the risk is 30% lower than in group
B. So, the HR provides a quantification of the effect of an
exposure. However, in clinical terms it may be more
relevant to look at the effect in terms of the difference of
the survival probabilities SAðtÞ � SBðtÞ instead of in terms
of the HR.

The HR is the object of the analysis performed by the
most common methods of comparing survival endpoints in
two or more groups. In particular, this means the log-rank
test (for marginal or unadjusted comparison) and the Cox
regression (adjusted comparison, Section 4.3); both ideally
require a PH assumption.

The standard methods for the analysis of survival are
summarised in Table 2.

The PH assumption

The PH hypothesis has a key role in validating several
methods of survival analysis, in particular the log-rank test
and the Cox regression (Section 4.3).

Having the hazards proportional between two groups
means that the HR is constant in time, and that the
difference measured by the ratio between the two groups is
always the same, at any point in time, from the beginning
to the end of the disease history. It is also useful to remark
that when applying the logarithmic transformation to the
hazard function under the PH assumption, the difference
measured in algebraic terms between two groups is equal to
a constant, which means that the two log-hazard functions
are parallel curves:

HRðtÞ ¼ h1ðtÞ
h0ðtÞ

¼PH y, h1ðtÞ ¼ y � h0ðtÞ , log h1ðtÞ

¼ log yþ log h0ðtÞ

The same holds true for log-cumulative hazard functions.
This property leads to a graphical method for assessing
violations of PH, illustrated below.

This assumption has a specific implication in biological/
clinical terms, and may not be satisfied in many situations.
For example, characteristics or treatments associated with
higher transplant-related mortality will act principally in
the first months after transplant, and the HR will decreases
to 1 after some time. Similarly, factors preventing relapse
may show stronger effects in the long term, and thus HR
values that diverge from the initial value and depart from 1.
The extreme case is the combination of these situations,
which leads to crossing hazard curves and a major violation
of PH (a typical example in SCT is the comparison of
allogeneic vs autologous transplantation).

The survival functions corresponding to two PH func-
tions are neither parallel nor proportional, being related by
S1ðtÞ ¼ S0ðtÞy. If we have PH, then under the null
hypothesis there is no difference between the two groups,
y¼ 1 and the two survival functions are coincident at each
point in time. This is why under an assumption of PH we
can apply a test for the difference between two hazard
functions (for example, the log-rank test) when we actually

26 Standard deviations are usually computed applying the Greenwood
formula. Note that the confidence intervals are obtained by neglecting the
dependence between survival estimates at different times. For this reason,
the band that connects the limits of the confidence intervals is not a proper
confidence band for the whole curve. The R library km.ci implements
several methods for computing pointwise confidence intervals as well as a
‘simultaneous’ confidence band.
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want to compare the entire survival function. Nonetheless,
it is important to stress that the log-rank test is a global test
for the difference, thus even when the PH holds, a
significant P-value from this test does not apply to the
difference of survival curves at a specific point in time. A
fortiori, in the presence of strong violations of the PH
assumption, and in particular with crossing survival curves,
the log-rank test is not useful to compare the curves, and
actually any investigation on the global difference would be
uninteresting. We will return to this issue shortly.

The PH hypothesis is important for the validity of the
log-rank test because the test is most powerful in detecting
a difference between two groups when this difference
satisfies the PH assumption. It is less powerful or less
capable of detecting an existent difference with a slight
violation of proportionality such as converging curves (for
example, HR decreasing to 1 after some time), and it
generally fails in the case of strong violations, with crossing
hazards, and crossing survival curves, because differences
in the short and long term have opposite signs and tend to
balance. The importance of PH in the Cox regression and
those methods addressing non-PH in the framework of the
Cox model will be illustrated in Section 4.3. In that section
(especially in Section 4.3.5), we will also briefly discuss the
possible causes of non-PH.

With converging survival curves, if the interest is mostly
in the difference at the beginning of the follow-up, then
there are tests belonging to the same family of the log-rank
test that focus on early differences by assigning them more
weight (Wilcoxon test and others).

When the primary interest is on the long-term outcome,
even with PH and especially with non-PH and crossing
survival curves, methods other than the log-rank test
should be used. It has already been stressed that the log-
rank test assesses a global difference and does not allow one
to draw conclusions regarding specific time points or the
long term in particular. It is also worth remarking that
observing a ‘plateau’ in a Kaplan–Meier curve cannot be
considered a proper method of assessing the probability of
long-term failure-free survival or ‘cure’.

When one is interested in the difference at a specific point
in time, such as 5-year survival rates, then there are specific
methods for computing the confidence intervals or testing
the difference, including those proposed by Klein et al.[13]

and Logan et al.[14] If the interest focuses on the probability
of cure from the disease (that is, of having a failure rate
similar to that of the general population, a type of endpoint
very relevant in paediatric studies), one should move to
cure models.[15,16] These topics are reviewed in the frame-
work of adjusted comparisons (Section 4.3.5).

How to detect violations of proportionality

There are a number of methods described in survival
analysis textbooks to detect violations of proportionality
including in books by Klein and Moeschberger[17] (Chapter
11), Therneau and Grambsch[18] (Chapter 6), and Hosmer
and Lemeshow[19] (Chapter 6). We mention here the two
main approaches:

� Graphical check: Because of the relationship between
S(t) and H(t), the log-minus-log transformation of S(t)

corresponds to logH(t). Under the PH assumption, these
transformations of the Kaplan–Meier curves for two or
more groups should appear as parallel curves. This type
of plot is easily produced by many software programs.

� The Cox regression: see Sections 4.3.3 and 4.3.4.

2.2.2. Competing risks endpoints
When the endpoint of interest is the occurrence of an event
which has competing risks, as when relapse competes with
NRM (Example 1), the relevant objects for the analysis are
the cumulative incidence function C1(t) and the cause-
specific hazard (CSH) function h1(t). Notice that we are
using a subscript 1 to refer to the first of k competing
events. In the case of relapse and NRM (which we will use
for illustration), k¼ 2 and the subscripts 1 and 2 refer to
relapse (as the main event of interest) and NRM (as the
competing event), respectively. Of course there is symme-
try, so every method is also applicable for investigating
NRM, as well as in any other context of competing risks
analysis.

Cumulative incidence

The cumulative incidence function C1(t) states for
each time t the probability of having relapse before time
t, or the percentage of patients who are expected to
experience relapse within time t. At the time origin,
C1(t)¼ 0, and in time C1(t) increases until a total rate of
relapse, which because there is a competing risk and
the event of interest may not occur at all can be lower than
1 even after an ‘infinite’ follow-up.27 Notice that the
concept of a median time to relapse is not always well
defined, as the cumulative incidence curve may not even
reach the level 0.5 (50%).

Correspondingly, C2(t) provides the probability of dying
without prior relapse before time t, or the NRM rate at
time t. As it will be demonstrated below, the sum of the two
cumulative incidence functions returns the overall prob-
ability of failure, regardless of the cause; the complement to
1 (100%) of this quantity is the failure-free survival
probability (RFS in our example).

There is a specific nonparametric estimator (which has
no particular name) for the cumulative incidence. A
seriously mistaken approach that was very common in
the past is to estimate this value as one minus the Kaplan–
Meier estimate obtained by applying censoring to the cases
failing for the competing event. This OMS-based approach
returns a biased estimate of the cumulative incidence.[20] It
is always overestimated, and the amount of overestimation
increases with the importance, in terms of rate, of the
competing event. In other words, the higher the incidence
of NRM, the higher the overestimation of the incidence of
relapse. What the OMS-based method returns represents a
‘fictional’ probability of relapsing if NRM risk could be
removed completely and independently of relapse, that is,
without changing the risk of relapse, which is clearly very
far from reality. Unfortunately, the proper nonparametric
estimator of the cumulative incidence is not available

27 In probabilistic terms, this translates into the remark that C1(t) is not a
cumulative distribution function; see, for example, Kalbfleisch and
Prentice,[43] Chapter 8, and Marubini and Valsecchi,[2] Chapter 10.
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among the standard methods implemented by many
statistical software programs, although specific macros
can be found. In R, the estimator is included in the library
cmprsk.

For the assessment of differences among cumulative
incidence curves, a number of established methods for
unadjusted and adjusted comparison have been established,
such as the Gray test[21] and the Fine and Gray[22]

regression model,28 respectively (both are implemented in
R in the cmprsk library). Both of these methods have been
criticised (for example, regarding their interpretation, see
footnote 28), and alternative methods are now appearing in
the current literature. In particular, adjusted cumulative
incidence curves for different covariate patterns can also be
estimated under certain assumptions by applying multi-
state models (R library mstate) or by using methods based
on pseudo-values[23] (SAS macros available).

Cause-specific hazard (CSH)

The CSH function h1(t) provides the ‘instantaneous’ risk of
relapse at each time t for survivors without relapse at that
time, or more generally, the conditional probability of
failing for cause 1 at that point in time given that the
patient did not fail for any cause before that time. It is
worthwhile noting that the latter condition means no
failure for relapse and no failure for NRM before time t.
There is a symmetric meaning for h2(t).

Patients are at risk of both types of failure, and the sum
of the two CSHs returns the overall hazard of failure
regardless of cause (the hazard function for RFS). Thus,
the survival function corresponding to the composite
survival-like event (RFS) is:

SðtÞ ¼ exp �
Zt

0

h1ðuÞduþ
Zt

0

h2ðuÞdu

0
@

1
A

8<
:

9=
;

¼ 1� C1ðtÞ � C2ðtÞ

This relationship between RFS and the sum of the
cumulative incidence functions of relapse and NRM was
anticipated above.

Because of the definition, in practice the inference for the
CSH of an event of interest can be performed with the same
methods used for the hazard function of a survival-like
endpoint (Section 2.2.1) applying censoring to the observa-
tions failed for competing events. It is worth repeating that
while this is formally correct within the use of the log-rank
test or the Cox model for the analysis of the CSH, in
general competing events cannot be treated by censoring
(Sections 2.1.1, 2.1.2 and 2.1.7) because censoring indicates
that the event of interest will occur after the date of last
follow-up, while the occurrence of a competing event
implies that the event of interest will not occur at all.

The standard methods for the analysis of competing risks
are summarised in Table 3.

The relationship between cumulative incidence and CSH

In intuitive terms, the probability of experiencing relapse is
expected to be higher with high instantaneous risk of
relapse, but this is not the only element involved. In order
to experience relapse, the patient also needs to avoid failing
for NRM. Thus, we also expect the rate of relapse to be
lower when the instantaneous risk of NRM is high. The
following formula formally establishes the relationship
between the cumulative incidence for the first event C1(t),
the CSH for the same event h1(t), and the overall failure-
free survival probability S(t), which, as we demonstrated
above, depends on the CSH of both the competing events:

C1ðtÞ ¼
Zt

0

h1ðuÞSðuÞdu

The practical consequence is that the results of the analysis
of the cumulative incidence curves (for example, applying
the Gray test for comparing two groups A and B) and the
results of the analysis of the CSH (applying the log-rank
test for the same comparison A vs B) may appear
inconsistent; instead, both are correct, but look at different
aspects of the same phenomenon. For example, if group A
has a higher instantaneous risk of relapse among the
patients alive in remission (a higher h1(t)), but also has a
higher risk of death without relapse (a higher h2(t)), then
the latter effect of A vs B may prevail and thus group A
could have a higher NRM (C2(t)) than group B and a lower
relapse rate (a lower C1(t)). Thus, A compared to B could
be found to be a (significant) risk factor for relapse when
looking at the CSH (by log-rank test or Cox regression),
while when applying the Gray test or the Fine and Gray
model, it may turn out to be non-significant or even
significantly protective against relapse.

Should I analyse the cumulative incidence or the CSH?

The choice of what to analyse should not depend (only) on
the availability of the software. The two objects correspond
to two different perspectives.[24,25]

Looking at the cumulative incidence corresponds to
focusing on the probability of having relapse, or on the
percentage of patients who is expected to experience a
relapse within a certain period after transplantation. This is
the perspective of prediction from the start of the disease
history, and it is relevant to informing the patients and
making strategic decisions prior to transplant.

Studying the effects of factors on the CSH of relapse
corresponds to investigating what factors increase the
instantaneous risk of relapse among the survivors, in-
formation that is more useful from the researcher’s point of
view to investigate the biological mechanisms or for clinical
decisions to be made after transplantation. However, it is a
somewhat restricted analysis in the sense that it neglects to
see the effects of the same factor on mortality. Thus, the
analysis must look at both the CSHs of the competing
events29 and/or at the combined failure-free survival. In this
respect, a good approach to reporting competing risks is by

28 The Gray test and the Fine and Gray regression model work best under
the assumption of the proportionality of a mathematical quantity called the
‘sub-distribution hazard’, which unfortunately has no clinical meaning.
This makes it difficult to determine when this hypothesis of proportionality
may not occur; see for example Scheike and Zhang.[45]

29 An analysis of both CSH is efficaciously combined in a multi-state
framework.
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plotting stacked cumulative incidence curves for all
competing events (Figure 2).

In addition to this type of reasoning, choosing a proper
approach should also consider more technical issues. For
example, proportionality cannot hold[26,27] for both a Cox
model for the CSH h1(t) and for a Fine and Gray model for
the cumulative incidence C1(t). Despite this limitation,
performing both the analysis of the CSH and the analysis
for cumulative incidence could be helpful in understanding
the phenomenon from a wider perspective.

2.2.3. Analysing the occurrence of an event when the
follow-up is complete
In SCT, there are several events of interest such as engraftment
or acute GVHD (in its traditional definition30) that are
evaluated at a fixed day x or within x days after transplant.
Often the object of interest regarding these events is the
overall rate of occurrence by time x, and not the exact
timing.31 In this case, if the follow-up is complete up to the
day of evaluation for all or almost all patients such that for
each patient the outcome is known, then the analysis can be
based on simple percentages. The relevant statistical
methods are briefly introduced here and are summarised
in Table 4. Of course, if the follow-up is not complete at the
time of the assessment x, or if there are event-free cases with
last follow-up before time x, or if the interest is in the time
of occurrence of the event, then proper methods for
survival and competing risks analysis must be used.32

In this section we offer remarks on the definition of the
outcome as dichotomous or categorical variables with kX3
levels. In fact, regardless of the particular event you are
interested in, death is usually a competing risk (unless the
event is death itself). In principle, then, the outcome
variable is a categorical one with at least three levels that we
can code as 0 for patients who are alive and event-free at
day x, 1 for patients who experienced the event of interest
within time x, and 2 for those who failed for a competing
event within time x. More levels (coded 3, 4 and so on)
could be necessary to distinguish among different types of
competing risks, if this is relevant for the investigator.
Notice that all cases with events occurring after time x must
be coded as zeros for the analysis.

In practice or in some clinical settings, early death could be
an irrelevant competing risk in terms of incidence, or else the
investigator may not be interested in distinguishing between
failure-free cases and cases failed for competing events. In
these situations, the outcome variable is a dichotomous one,
indicating the occurrence or not (1 / 0) of the event of
interest, and it is summarised by a simple percentage (the
number of cases who had the event before time x divided by

the total number of cases evaluated) which estimates the
probability p that a patient experiences the event before time
x. Usually two groups, A and B, are compared by the risk
ratio pA/pB. Significance can be tested in various ways, for
example by w2 or Fisher’s exact test applied on the 2-by-2
contingency table (group by event). The adjusted compar-
ison can be calculated using the logistic regression, where
the effects are estimated in terms of the odds ratio:

ORAvsB ¼ OA

OB
being O ¼ p

1�p

When it is more appropriate to distinguish event-free cases
from cases that failed for competing causes before
experiencing the event of interest, or to separately report
different types of competing failure, the tools for a
descriptive analysis of the outcome are the same: a table
of percentages for each of the k levels and a w2-test on the 2-
by-k table. Some care is required in the communication of
results, as is suggested in the example below. However, the
multivariate analysis is more complicated (methods such as
an extension of logistic regression33 can be applied).

Example 4: Engraftment rates
Haematopoietic recovery (or engraftment) after transplan-
tation corresponds in general terms to the achievement of
persistent blood cell counts above predefined levels, usually
evaluated within 30, 60 and 100 days from transplant. (The
precise definition depends on specific clinical/biological
issues that may differ with respect to the type of transplant
or the source of stem cells. The official EBMT definitions
should be used in EBMT studies).

Early death is a competing risk. Other competing failures
could be graft failure, loss of graft, second transplant with
no prior engraftment, and even relapse or disease progres-
sion. The statistician should discuss with the clinical
investigators the role of these events, although there is no
great necessity for taking them into account if they have
very small incidence. The analysis should consider all
relevant competing events.

Consider a situation where engraftment is evaluated at day
30 after transplant. The main interest is the overall rate
(probability) of engraftment, and the only competing risk is
death without engraftment. The outcome is thus a three-level
categorical variable. Out of 10 patients, two died without
prior engraftment at days 10 and 14, respectively, and the
others engrafted at days 5, 9, 11, 12, 15, 25, 35 and 45. All
cases can be evaluated at day 30, that is, there is no
censoring. Because this is true, we can look at percentages
instead of cumulative incidence curves. Notice that of the

30 The ‘traditional’ separation of GVHD into acute and chronic based on a
time threshold (100 days) is currently being replaced on a clinical basis, and
as soon as data collection rises above this rigid definition, the statistical
analysis will necessarily switch entirely to the competing risks setting. To
date, acute GVHD was most often analysed as described in this section,
while chronic GVHD as a competing risks endpoint was left-truncated
(Section 2.1.4) at 100 days, thus restricting to survivors at 100 days.
31 The timing of engraftment, for example, would be described as the
median among the cases who had engraftment.
32 For an event without competing risks the methods proposed in Klein
et al.[13] and Logan et al.[14] may be used to compare the overall rates of
events at time x even with censored cases.

33 Indicate with E1 the event of interest and with E2 the competing event.
The corresponding probabilities of occurrence are p1 and p2; 1�p1�p2
represents the probability of being alive and failure-free (no event) at the
time of assessment. Correspondingly, define:

O1 ¼ p1
1�p1�p2 ¼

PrðE1Þ
PrðnoeventÞ and O2 ¼ p2

1�p1�p2 ¼
PrðE2Þ

PrðnoeventÞ

To compare two exposure groups, A and B, it is possible to implement
regression models, where the effect of A vs B is estimated in terms of the
ratios:

OR1 ¼ O1
A

O1
B

and OR2 ¼ O2
A

O2
B
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engraftments observed, only six occur before day 30,
meaning there are two event-free patients. It is not complete
reporting only that ‘6 out of 10 (60%) engrafted’, it is more
appropriate to provide the full information: ‘6 out of 10
(60%) engrafted before day 30, and another 2 patients (20%)
died without prior engraftment. The remaining 20% of the
patients were alive without engraftment at day 30.’ With this
information, the reader realises that another 20% of cases
may have engrafted after day 30, thus the current 60%
probability may have risen to 80% at a later time (assuming,
of course, that this is clinically feasible).

2.3. Population selection and methodological issues
The study population must be defined according to the
rationale of the investigation and must represent a target
general population of interest. A limited possibility for
generalising the results of the analysis and the presence of
bias, that is, some inbuilt systematic ‘error’ that leads to faulty
knowledge, are the main problems to be aware of when
selecting the study population. In this section, we present
examples of biased selections (not all possibilities are covered).

In RBS, the study population is selected according to the
rationale of the investigation by including only certain
types or subtypes of disease, restricting to certain patients
or transplant characteristics, fixing the calendar period and
so forth. It is worth pointing out that when the endpoint of
interest is survival since first transplant, for example, the
selection criteria cannot be based on patient characteristics
defined after first transplant, nor on future events (such as the
administration of a second transplant) or outcomes. The
original selection can be refined during the phase of
preliminary descriptive analysis. A main reason for doing
so could arise from the presence of missing values. The
problems that may arise and how to conduct this delicate
phase are illustrated in Section 3.3. The following examples
illustrate bias arising from selecting the population to exclude
missing values. Missing values do not always cause problems,
and neither does bias originate only from missing data.

� An important risk factor (for example, a biomarker) is in
principle recorded on EBMT Med-B forms, although it is
more frequently reported by large, experienced transplant
centres. Selecting only cases with non-missing information
for this factor returns a study population that may not be
representative of the general target population; such
reference centres may treat the ‘worse’ patients or they
may provide better care and thus better outcomes than the
‘average’ centre. Notice that the investigator may be
unaware of this ‘hidden’ selection mechanism because it is
difficult or nearly impossible to identify centre character-
istics and/or relate them to missing values.

� Often missing values are related to the calendar: some
risk factors have only recently been identified and were
not or were only rarely collected in previous years, some
treatments were in use during certain periods, but seldom
reported in other periods, and so forth. Thus, restricting
the analysis to cases with known information can
correspond to a selection based on other phenomena
associated with calendar time: improvements in treat-
ments, changes in the diagnosis of relapse, admission to
transplantation of wider categories of patients and so on.

� If missing values more frequently affect one of the main
subgroups whose comparison is the target of the study,
then a selection of known cases could induce a bias, as
in the following example. A study aims at comparing
two diseases, A and B. Cytogenetics is considered an
important adjustment factor and thus only patients with
known cytogenetics are included in the analysis. Un-
fortunately, in the past cytogenetics were usually
performed for patients with disease A, while in patients
with disease B it was conducted only if some other risk
factor was present. Thus, after the selection group B
includes the ‘worse’ patients, and this bias affects the
comparison with group A. (The analysis should at least
try to control for the effect of the third risk factor, but
this may not be sufficient to correct for this bias).

In prospective studies (both observational and interven-
tional), the definition of the study population is made
during the planning phase by fixing inclusion and exclusion
criteria for enrolment (and possibly defining sub-popula-
tions for specific analyses) and in general should not be
refined after seeing the data. In particular, the efficacy
comparisons should be performed by analysing all cases
enrolled and applying the ITT principle.

This important concept applies to any study comparing
treatments, say A vs B, where the decisions on which
treatment should be given to each patient was determined
according to a protocol or otherwise (for example, in RBS)
recorded at the beginning of the disease history. The clearest
situation is the case of a randomised clinical trial. Following
the ITT principle, we basically compare the outcomes
between the groups defined on the basis of the treatment
assigned, regardless of subsequent events (and of actual
treatment). In particular, each observation is included in the
analysis and belongs to the original group, A or B, regardless
of whether the patient had a treatment schedule or dosage
modified, failed to complete the treatment or failed to receive
the prescribed treatment at all (by, for example, crossing-over
to the other arm). The rationale is that the need for
modifying, stopping or changing the treatment could be
related to treatment, and failing compliance could be
interpreted as a failure of the treatment strategy. Reasons
for non-compliance are often related to toxicity or more
generally to secondary effects of the treatment, including
consequences of particularly uncomfortable or heavy treat-
ments such as depression or discouragement (and thus drop-
off for refusal or loss to follow-up) and even suicide. Seen
from another perspective, the efficacy of a treatment may
allow the patient to receive further treatments not originally
prescribed (for example, a second transplant) that provide a
benefit for the final outcome. Excluding from the analysis or
re-allocating patients according to the treatment actually
received (the criterion known as per-protocol, PP) is a
potential source of bias except when non-compliance was
completely independent of the status of the patient. The
following example illustrates a bias arising from violating the
ITT principle in the analysis of data from a PCT.

� A PCT aims to compare two treatments, A and B; the
treatment arm is assigned at enrolment according to
randomisation. At the end of the study, many patients
turn out to be non-compliant, going off treatment well
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before they received all the planned cycles.34 Following
the feeling that for these cases the treatment could not
perform its curative action, investigators exclude them
from the analysis. Because non-compliance was mostly
due to toxicity, and treatment A was more toxic than
treatment B, the PP population is self-selected; in
particular, group A remained the fittest patients who
had fewer problems with toxicity or could otherwise
overcome them. The PP comparison between A and B is
thus biased and overestimates the efficacy of treatment
A. This PP estimate is a measure of the effect of A
provided that the patient will not interrupt the treatment.
It is not really useful for deciding how to treat a patient
because, in real life, patients may be non-compliant. It is
worth noticing also that while the ITT groups A and B
were created by randomisation and, thus, were compar-
able in terms of baseline characteristics, the PP groups
have lost the randomisation advantage.

The bias caused by self-selection mechanisms like the one
described above may also affect the RBS, where they may be
less clearly identifiable and where perhaps it is less feasible to
find a correct approach. We have already introduced an
example of potential self-selection in a situation with second
transplantation (Section 2.1.6). In the EBMT registry,
information on the planned treatment strategy at each
transplant is, in principle, available, which can be used to
make an ITT analysis to compare different strategies, such as
autologous plus allogeneic vs double autologous transplan-
tation. However, because of the retrospective data collection,
this type of analysis is not comparable to a randomised
study, thus necessitating very cautious interpretation.

3. Preliminary, descriptive and marginal analyses

The general scope and features of preliminary, descriptive
and marginal analyses were introduced in Section 1.3
together with the problem of controlling for confounding
factors and, more generally, the need for the simultaneous
evaluation of the effects of several prognostic factors on
outcomes. The latter phase of the statistical analysis is
treated separately in Chapter 4 (adjusted comparisons).
The main methods used for preliminary, descriptive and
marginal analyses are indicated in Section 3.1.

The preliminary phase is critical to the development of
the study because it is the phase that fixes the data (Section
3.2) and refines the study population (in RBS) and
sometimes the entire plan of analysis. In this phase, it is
crucial to investigate potential problems related to the
presence of missing values (Section 3.3). Another important
aspect, evaluating the actual amount of information
available from the data on the occurrence of the events of
interest, is treated in Section 3.4.

Marginal or ‘univariate’ analysis (the analysis of each
endpoint of interest with respect to one or more factors,
separately for each factor and with significance testing) is

valuable in itself as part of the descriptive analysis, but usually
the conclusions reached must be confirmed by a multivariate
analysis (adjusted comparisons are treated in Chapter 4). The
marginal analysis is thus an intermediate and fundamental step
of the adjusted analysis. At this stage, multiple tests are being
performed, and the probability of the inflation of false
discovery is non-negligible. To prevent false conclusions it is
possible to adopt rules such as the Bonferroni–Holm correction
(illustrated in Section 4.2.3), and apart from applying these
rules, it is important to appraise significance in an appropriate
way (Section 1.4) when interpreting the results.

Given the importance of an objective communication of
results, this chapter also presents information on how to
report tables and curves (Section 3.5).

3.1. Methods for descriptive and marginal analyses
Preliminary, descriptive and marginal (that is, unadjusted)
analyses can be performed using the methods indicated in this
section. Table 1 lists the basic statistical methods that can be
used to analyse variables (patient characteristics, transplant
type, and so on) to check and describe them, and perform
marginal hypothesis testing. We recommend consulting
standard statistics textbooks for broader illustrations of these
and other suitable methods, as well as for what factors
influence the validity of these methods and how to test for it
(for example, how to test normality and equality of variances
before applying a t-test). The methods for describing and
marginally comparing endpoint variables were illustrated in
Section 2.2, and are now summarised in Tables 2–4. The
estimation of median follow-up is described in Section 3.4.

Table 1. Methods for descriptive statistics

Test for association

Type of
variable

Description Differences
in k groups

With a
continuous
variable

Quantitative
continuous
Example:
WBC; age

Median and
other
quantiles;
minimum
and
maximum
value

Mann–
Whitney test
(k¼ 2) or
Kruskal–
Wallis test
(k42)

Test on the
correlation
coefficient
(linear
association);
Spearman’s
Rho,
Kendall’s
Tau-tests
(more
general
association)

- if with
normal
distribution
(symmetric,
bell-shaped),
also:

Mean and
standard
deviation

t-Test (k¼ 2)
or analysis of
variance
(ANOVA)
(k42)

Linear
regression

These methods require
verifying certain
hypotheses, for example,
homoschedasticity

34 It was already remarked that censoring observations when the patients
go off-protocol is erroneous (Section 2.1.1), and it is suggested in this
case to define combined endpoints to account for interruptions or
violations of the prescribed treatment, considering them as types of
failure (Section 2.1.3).
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Table 1. Continued

Test for association

Type of
variable

Description Differences
in k groups

With a
continuous
variable

Categorical k
levels
Example:
CML Phase
¼ {CP, AP,
BC} (k¼ 3
levels); gender
¼ {M, F}
(k¼ 2,
dichotomous).
Example of
ordered
categorical:
stage of the
disease (I–IV);
age in classes

Frequency
table

w2-Test or
Fisher exact
test (2� 2
tables;
preferable
for small
samples) on
the cross-
tabulation
(specific tests
of trend can
be applied
for ordered
variables)

(Same:
Mann–
Whitney,
Kruskal–
Wallis, t-test,
ANOVA)

Table 2. Methods for survival endpoints (for example, OS,

RFS, PFS)

Object Estimation Unadjusted
comparison

Regression model

Survival
function
S(t)

Kaplan–
Meier
curve

Hazard
function
h(t)

Log-rank
test*
Wilcoxon
test

Cox* (estimates of
the effect via hazard
ratios)

*Methods with the best performance when PH hold.

Table 3. Methods for competing risks endpoints (for example,

relapse, NRM, chronic GVHD, response)

Object Estimation Unadjusted
comparison

Regression model

Cumulative
incidence
Cj(t)

Proper
non-
parametric
estimator*

Gray test** Fine and Gray**
(effect estimates:
no intuitive
clinical meaning!)

Cause-
specific
hazard
function
hj(t)

Log-rank
test***

Cox*** (effect
estimates: cause-
specific HR)

* Do not use OMS from a Kaplan–Meier curve (see Section 2.2.2).
** Methods with the best performance when the proportionality of the sub-
distribution hazard function holds.
*** Methods with the best performance when the proportionality of the
cause-specific hazard function holds.

Table 4: Methods for events before a certain time (complete

follow-up) (for example, engraftment at day 30, acute GVHD)

Object Estimation Unadjusted
comparison

Regression
model

Probability Percentages Tests for
frequency
tables (w2 or
Fisher exact
for 2� 2
tables) or
specific tests
for
probabilities/
risk ratio/
odds ratio

Two
levels:
logistic
regression
(effect
estimates:
odds
ratios)
(three
levels: for
example,
extensions
of logistic
regression)

The completeness of follow-up is fundamental. No patient should be lost
to follow-up event-free before the end of the evaluation period. If this
condition does not hold, use the methods in Tables 2 and 3.

3.2. Data preparation
The preparation of the final data set includes verifying
nonsense or inconsistent values, extreme values, missing
data and performing some preliminary recoding of the
relevant variables, although decisions on this type of data
management must be made in close association with other
decisions encompassed by the final statistical analysis (for
example, with regard to the treatment of missing values
and the transformation of the variables).
Errors in the data. Despite data verification at the
database level, data can still be affected by several
errors, and preliminary verification will avoid losing
time later following the discovery of problems in the
data set during the analysis. Two main data errors may
arise from nonsense values (for example, negative values
for the time interval between diagnosis and
transplantation) or inconsistent values (for example, a
time to relapse that is greater than the survival time).
Tables and bar charts with frequencies (for categorical
variables) or descriptive indexes (minimum and maximum
values, 5% and 95% percentiles, the five lowest and
largest values), and graphs (histograms and boxplots) for
continuous variables can be used for a general overview.
In addition, targeted assessments could be made based on
the substantive clinical knowledge (for example, standard
reference values for a clinical parameter at diagnosis)
or on the basis of previous experiences with data from
that particular registry or disease. All nonsense and
inconsistent values should be corrected whenever possible;
otherwise, they should be set equal to missing.
Extreme values. Values that are plausible (that is, those
that cannot be considered nonsense) but that are quite
distant from the other values observed in the sample (for
example, more than 3 times the standard deviation in
normally distributed variables) are called outliers. When
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these values can be attributed to data collection errors
(during data entry, typing or conversion; sometimes they
are caused by using the wrong measurement unit), they
should be corrected or treated as missing values.
Otherwise, they deserve special attention. On the one
hand, they could indicate some biological mechanism that
requires further investigation. On the other hand, they
could drive the conclusions of the analysis, especially
when dealing with small samples. For these reasons,
during data checking outliers should be identified for
subsequent investigations (such as influence analysis in
multivariate regression models, mentioned in Section
4.2.6).
Missing values35 usually affect both registry data and data
collected from clinical trials.36 Depending on the amount
of missing data and on the precise nature of the missing
data, important limitations or biases may affect the
analysis and its conclusions. It is therefore crucial during
the preliminary phase to search for missing values and
reduce them if possible by retrieving the data or imputing
the correct value if it can be derived from other
information (such as when for historical reasons an item
was not applicable or deterministic, for example, the type
of conditioning could not be ‘reduced’ in 1985).
Investigating the potential impact of missing data on the
analysis and deciding how to manage missing data are
also part of the preliminary analysis and can result in the
refinement of the study population. This is a delicate
phase of the study and may require the contributions of
expert statisticians and principal investigators. Section 3.3
is dedicated to missing values.
Data transformations. Preliminary data transformations
(apart from those foreseen in the study plan) can appear
necessary after the preliminary descriptions have been
made. Continuous variables with skewed distributions
may require a log-transformation (to reduce the influence
of very high values) or another functional transformation.
Qualitative variables (or discrete numeric variables that
can assume only few values) could be recoded by
collapsing categories when the number of patients in
some of the original categories is low. Of course, the
categories being created will have to retain proper clinical
meaning (consistent with the aims of the study), and it is
strongly recommended to retain properly ordered
categories for variables such as disease stage. Further

data transformations may be applied in building
regression models (see Sections 4.2.2 and 4.2.3).

3.3. Missing values1
Any statistical procedure (from a simple frequency table
to a regression model) that involves one or more variables
with missing values can be performed only by excluding
all cases with one or more of the missing values. The first
consequence of having missing values, therefore, is that
the analysis is based on a restricted population: estimates
are less precise, and there is a loss of power for statistical
hypothesis testing. Notice also that different procedures
involving different sets of variables will each refer to a
different (sub)population. Problems are limited to the loss
of sample size only in the case of ‘missing completely at
random’, where there is no pattern of relationship
between the missing values and any known or unknown
influential characteristic or outcome (including the
variable itself). In this situation, the sub-populations are
representative of the target population.
When the missing values are differently distributed

according to other factors, or when they may possibly be
related to unknown or unmeasured characteristics, and
the cases with known values have different outcomes than
the cases with missing values, then the conclusions drawn
from an analysis on a restricted sub-population may be
affected by bias (and, if each procedure excludes a
different set of observations, every analysis may be
biased in a different way). The problem is partially
amendable if it can be assumed that the nature of the
missing data is related to known characteristics (missing
at random, MAR), both because some ‘good’ technique
of imputation (Section 3.3.2) allows predicting the missing
value from other information present and because the
results can be interpreted. If missing values are truly
related to an unobserved variable that affects the
outcome, or depend on the actual value (for example,
large values of X are more frequently missing than small
values), then imputation techniques are not useful, and
the conclusions of the analysis are questionable (this is an
informative missing, IM, problem).
It is therefore important to investigate (Section 3.3.1) the

amount and type of missing values and to understand their
potential impact on the analysis and its conclusions to
decide how to treat missing values. The results of the
analysis of the type of the missing data should also be
described when publishing the results to allow readers to
evaluate the potential limitations of the study and to support
the appropriateness of the statistical analysis performed.

As a general rule, the reduction of the study population to

the cases with known values for a set of key variables can be

considered provided that the amount of missing data per

variable and globally does not exceed 5–10%, and/or that the

resulting sample size is still adequate to the study objectives

and there is no evidence of relevant bias. Alternatively, it may

be better to disregard a variable with many missing values

when performing the multivariate analysis.

A further option, at the cost of more complicated and time-

consuming analysis, is the application of methods for the

statistical imputation of missing values. Be aware, however,

35We refer here to explanatory variables. Cases with a missing value for
the main endpoints are usually excluded from the study, although the
investigators should always be concerned with generalisation and bias
(Section 2.3) and undertake the necessary investigations. A few missing
values in secondary outcomes may be tolerated, but the reduction of the
sample for that particular analysis must be documented in the
publication, together with some discussion on whether the restricted
population is still representative of the whole sample and whether there is
any possible relationship between missing data and the value of the
endpoint. The reasons are explained in the text.
36 In clinical trials, the presence of missing values for relevant variables is
particularly problematic (for issues related to the ITT principle, see
Section 2.3). The strategy used to manage missing values should always
be indicated in the protocol of any type of prospective study. Avoiding
missing values as much as possible should be planned for during any
data collection or prospective study. Usually, it is necessary to restrict
data collection to the main items needed, implement a good method of
data entry, perform monitoring to avoid errors and so on.
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that no method can really correct for hidden or unclear

mechanisms related to the nature of the missing data. In any

study, the ‘best’ solution, although expensive in terms of time

and budget, is to improve the quality of the data.

3.3.1. Investigating the nature of the missing data in
practice
For a single variable X, or when assessing the consequences
of the exclusion of cases with missing values for a set of
variables, a first step is to determine whether the nature of
the missing data is related to any of the main outcomes or
to other characteristics. The deletion of missing values can
be considered ‘safe’ with respect to potential bias if the
‘missing’ group has outcomes similar to the ‘known’ group
and presents similar characteristics. This is confirmed by
defining and comparing the ‘missing’ and ‘known’ sub-
groups; the comparison can be made using univariate
methods (Tables 1–4) or multivariate analyses (for asses-
sing relationships to certain variables, the choice may not
be restricted to logistic regression, but may include cluster
analysis, recursive partitioning, and so on).

A slightly different approach is to analyse the missing X
as an additional category of X:37 the outcome of the
‘missing’ level should be intermediate among the outcomes
of the other levels. For example, high Beta2 values are a
risk factor, and myeloma patients with missing Beta2 are
expected to have an estimated risk of death higher than that
of the group with ‘low Beta2’ and lower than the risk of the
group with ‘high Beta2’. Moreover, if the ‘missing’
subpopulation is similar to the general population, and if
the latter has a majority of cases with low Beta2, then the
risk estimate for the missing group will be closer to the
estimate for low Beta2. In some situations, the use of the
‘missing’ category for a variable X to be included in a
model may be an acceptable alternative to the deletion of
cases with missing values.
Unsatisfactory, unexpected and inexplicable results from
these simple analyses deserve additional investigation and
indicate caution in the management of missing values.

3.3.2. Statistical imputation methods*
Imputation is an alternative to case deletion. In general
terms, it consists of replacing the missing values with values
chosen from the range of possible values on the basis of the
available data. The advantage with respect to case deletion
is efficiency in that no information is wasted, but rather all
information is used to ‘predict’ the missing values. The
disadvantages come from relying on assumptions and the
practical difficulty.

‘Single imputation’ methods use a single ‘best guess’ for
each missing value, and perform the statistical analysis on
the resulting complete (imputed) data set. ‘Multiple
imputation’ methods impute more than one value to each
missing value, then perform the analysis on each complete
data set, finally returning as a result some average of the

results from each imputed sample (adjusting the variance
and covariance matrix).

A very simple and traditional single imputation ap-
proach is to replace a missing value with the median of the
observed values (X continuous covariate) or with the mode
(X categorical covariate). This type of approach could be
considered when there is a small percentage of missing cases
for very few variables. A more effective approach is to use
regression models estimated on subsets of the known cases
to predict the missing value of X1 from other variables: X2,
X3, and so on. The literature proposes several different
methods for this type of imputation (for example, many
authors suggest imputing the value estimated from the
model corrected by a random component, including the
possibility of sampling from the residuals of the models,
and so on). A further approach is matching a ‘missing’ with
a ‘known’ value, but this may be unfeasible unless the
sample is very large. One important point is that the most
recent statistical literature recommends including the out-
come among the predictors of missing values; otherwise the
relationship between the variable with missing values and
the outcome would be underestimated.

This quick overview is only meant to recommend
avoiding a ‘home-made’ approach to handling missing
data when there is extensive literature illustrating many
methods for dealing with the problem. A good review can
be found in Chapter 3 of the book by Harrell,[28] which also
illustrates the use of the R library Hmisc for some of the
methods. It is clear that more ‘sophisticated’ techniques are
more difficult to implement; however, they are more
appropriate for complicated situations where case deletion
is not really an option (in the presence of high percentages
of missing values in many relevant covariates, correlations
among missing data and known information, and so on).
The major statistical programs implement one or more
imputation techniques; it is thus recommended that the
statistician assesses what is being used, makes a cautious
use of these methods, and remains aware that no method
can truly correct for hidden or unclear mechanisms related
to missing data. Clues of such mechanisms are provided by
exploratory analysis, the comparison of results of different
imputation approaches and by unexpected results in
general.

3.4. The length of follow-up
Usually, studies of long-term (time-to-event) outcomes
must report the length of follow-up in terms of the median
(with 95% confidence interval). There are two methods
for computing the median follow-up. One is to use the
median estimated from a (‘reversed’) Kaplan–Meier curve
for the survival times of all patients, where deaths are
censored (code¼ 0) and failure-free patients provide
complete observation (code¼ 1). The rationale is that
death prevented observation of the actual follow-up time.
Another method is to compute the median of the survival
times only from patients alive at last follow-up; however,
this estimator may be unsatisfactory with high failure
rates.[29] Another object of interest could be the difference
between the potential follow-up (time from origin to
cutoff date of analysis) and the actual follow-up for
failure-free cases.

37 This holds for X categorical covariates; if X is continuous, the best
approach is to categorise it (in some texts, it is suggested instead to
replace the missing value with a fixed value such as the mean or median
of the known values of X, and add a dummy variable to indicate missing
data (1 if missing, 0 if known) in the models (dummy variables are
illustrated in Section 4.2.3).
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3.4.1. Follow-up, events and censoring: do I have enough
information?1
In a study of survival, a major concern is whether the
follow-up and the information that was captured are
‘sufficient’ to draw conclusions. There are no precise
answers, but some remarks are appropriate.

Technically speaking, the amount of available informa-
tion for a survival analysis is measured by the number of
failure events observed, not by the total number of cases
analysed. Thus, one could say that the follow-up is ‘short’
when the number of events observed is small. In particular,
the statistician may observe that the number of events
observed does not allow a statistical evaluation of the
objects of interest; for example, as a rule of thumb, one
should have observed 7–10 events per parameter to be
estimated in a Cox regression.

From a different perspective, a study of survival times
must have a follow-up adequate with respect to the
expected timing of failures. The clinical investigators may
judge that a large percentage of censoring indicates that the
follow-up was insufficient with respect to the ‘speed’ of
failure for that disease/group/treatment.

If the potential follow-up of the study appears to be
adequate for its purposes, observing few events may
indicate the unfortunate possibility that failures are
under-reported. This leads to concerns about IM and
biased estimators (Section 2.1.1) and the validity of the
study. When under-reporting is suspected especially in the
long-term, investigators could decide to artificially reduce
the length of follow-up for the study. This approach can
also be followed when comparing two groups with very
different follow-up times (and high censoring rates), which
limits the possibility that the role of that prognostic feature
is influenced by the unequal observation pattern. Artificial
censoring at time x is applied simply by recoding the
survival indicator to be equal to zero when the failure time
is larger than x.

Of course, when it is expected to see ‘cured’ patients, or
when patients can have a large probability of being
failure-free (or more precisely, they are at no more
risk of failure than the general population) for a long
time, as in some paediatric studies, large percentages of
censored data do not raise concerns about the validity of
the study, but the analysis may require specific methods
(see ‘The PH assumption’ and Section 4.3.5 for cure
models[15,16]).

3.5. Reporting tables and curves

3.5.1. Tables.
Tables are very useful synthetic prospects of the data. They
are commonly used to report population characteristics
(possibly in subgroups), survival or cumulative incidence
probabilities, results from regression models and so forth.
Below are a few suggestions for table contents:

� When describing the population in subgroups, always
report the percentages computed on the proper denomi-
nator. For example, in a study including autologous and
allogeneic transplants, the percentages for donor gender
should be computed on the total number of allogeneic

transplants, not on the total number of transplants
included in the analysis. As another example, percen-
tages for causes of death should be computed on the
number of patients dead.

� Particular attention should be given to the presence of
missing values. Computing percentages on the number of
known observations (that is, excluding the missing
values) is usually the most appropriate approach unless
an interpretation can be given to the missing values (in
particular, records such as ‘not applicable’ or ‘not done’
should be discussed with the clinical investigator and/or
study coordinator).

� The number or percentage of missing values should
always be reported.

� The sum of the percentages should of course be 100%
(round the percentages if necessary).

� In tables in particular, and possibly throughout the
manuscript, round all quantities of the same type to an
equal number of decimal figures.
� For P-values the journals often provide specific

guidelines; as a general rule they should be reported
with three digits after the decimal separator; for very
small values it is suggested to choose ‘o0.001’, while
high P-values (for example, larger than 0.10) could be
reported with only two digits after the decimal point.

� Whenever possible, when reporting estimates for sub-
groups to be compared or the effect of a factor from a
regression model, report the confidence intervals in
addition to or in place of the P-values (Section 1.4).

� The caption of the table should describe the contents of
the table, the population on which it is based, and
possibly the statistical methods used.
� Example: ‘HRs (with P-values and 95% confidence

intervals) from the adjusted Cox regression, including
treatment, age and status at conditioning. All cases.’

Example of table reporting characteristics

Patient
characteristics

Missing
values
(%)

n %

445 years age
at diagnosis

0 (0.0) No 48 13.4

Yes 309 86.6

MM
classification

6 (1.7) IgG 210 59.8

IgA 63 18.0
Light
chain

60 17.1

Other Ig 6 1.7
Non-

secretory
12 3.4

b2 at diagnosis
(mg/dL)

79 (22.0) r4 210 75.5

44 68 24.5

Notice that percentages in each subgroup are computed on the basis of the
‘known’ cases, not on the overall total (357). In this table, a column is
dedicated to providing details on missing values, but these could
alternatively be provided as a note below the table.
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3.5.2. Curves

As was seen in Section 2.2, the Kaplan–Meier curves
and the cumulative incidence curves (obtained from the
proper nonparametric estimator) summarise survival-like
and competing risks endpoints, respectively. A few
suggestions for the presentation of these curves are given
below:

� The range for the vertical axis (ordinate), representing
the probability, should always be (0.0–1.0) or (0–100%).
The scale for the horizontal axis (abscissa), representing
time, should mark relevant time points from the time
origin, whether in days, months or years.

� The time range should be restricted to avoid showing the
tails of the curves where in one or more subgroups there
are fewer than 5 or 10 patients still at risk. The estimates
in these regions are highly uncertain, and showing long
horizontal tails (‘plateaus’) based on few observations
could improperly suggest an interpretation in terms of
the probability of being ‘cured’.

� More generally, the graph should allow the reader to
appraise the precision of the estimates. The initial size of
the population and the number of patients lost to
follow-up must be clearly reported in each graph. Tick
marks on the curves are used to indicate the censored
cases, but this is not sufficient with respect to loss-to-
follow-up. It is recommended that the number of
patients at risk in each group for a series of times
(below the time axis, as shown in Figure 5, left side) be
reported.

� The precision of the estimates could in principle be
reported by adding bands around the curves that
represent the uncertainty of the estimates (Figure 5,
right side). Notice that the majority of software
programs can graph bands obtained by connecting the
upper and lower limits of the pointwise confidence
intervals (that is, the confidence interval (CI) for each
point estimate). More appropriately (and difficult to do
in practice), the variability of the entire curve should be
evaluated by taking into account the dependence among
all of the estimates. Such a confidence band is usually
larger than the band based on the pointwise CIs.
However, plots reporting bands are often not very
clear, especially when the graph compares two or more
groups.

� When reporting competing risks, consider using a graph
of stacked cumulative incidence curves (Figure 2). The
curves for all competing events can be plotted one on top
of the other so that the area between the two curves (or
between the first curve and the horizontal axis)
reproduces the probability for each type of failure, and
the area above the curve on top represents the total
failure-free survival probability (Section 2.2.2).

� The caption of the plot should clearly indicate the
endpoint (entry and exit times, failures/competing events
being considered), the population (selection criteria) and
in some cases (such as when reporting clinical trials) the
date of the analysis.
� Example: ‘PFS from transplant to either relapse/

progression or death (or last follow-up), all cases.’

4. Methods for adjusted comparisons

4.1. Regression models
The general idea of a regression model is to describe how
an outcome variable depends on a series of ‘explanatory’
variables considered together and not separately as in the
‘marginal’ analysis. For this type of analysis, the adjectives
‘multi-variable’ and ‘multivariate’ are used. The purpose is
to estimate the ‘net’ effects of each explanatory variable
and to control for confounding (Section 1.3).
More specifically, a linear regression model assumes

that some quantity that identifies the probability
distribution of the outcome depends on the explicative
variables (say X1, X2 and X3) through a linear
combination b0þ b1X1þ b2X2þ b3X3 (the term b0, called
the intercept, is not always included, see for example the
Cox model). Thus, the regression parameter b1 quantifies
the effect on the outcome of a unity increase of X1 given
that X2 and X3 remain constant (this is the ‘adjusted’
effect of X1). The beta parameters are estimated from the
data. A test for the null hypothesis of no effect (H0: bj¼ 0)
is performed for each covariate; in addition, an overall
test for the presence of any effect is provided.38

The best known regression technique is the multiple
linear regression method, which applies to continuous,
non-censored and normally distributed dependent
variables. As was seen in Chapter 2, this type of
outcome variable is hardly ever present in the context of
SCT research where the main types of endpoints require
the Cox model, the Fine and Gray model, and logistic
regression (Section 2.2). Apart from some technical issues,
the general remarks on model building are similar, and
they will be illustrated in the next section, while Section
4.3 focuses on the Cox regression. As the title of this
chapter implies, we will focus on the situation where the
model is aimed at estimating the effect of one main factor,
such as treatment, while adjusting for other variables.
This objective is different from building a model for the
prediction of outcomes or for proposing a risk score,
situations where other issues (explained variation,
calibration, and so on) should be taken into account
and where other tools (such as regression trees) could be
used. Providing detailed suggestions on building
prognostic models properly is beyond the scope of these
Guidelines; for a good review, see Harrel.[28]

It may be superfluous, but still fundamental, to remark

that a ‘true model’ does not exist but that all models are

only useful or not useful, and they are faithful or unfaithful

to the data. Models are a type of ‘simplification’ of

extremely complicated, highly heterogeneous things that

apply some (mathematical) reduction of complexity to

highlight some aspects of it. Several different models may

be built for the same outcome and the same set of

explanatory variables. Usually, we propose one single

model, choosing the one that is more useful to focus on

the object of interest in our study. What guarantees the

38 The overall significance is tested using the Likelihood Ratio test. The
Score test and the Wald test are based on approximations and generally
lead to the same conclusions (if not, refer to the Likelihood Ratio test).
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reliability of a study are an ‘honest’ approach to the

analysis that does not ‘hide’ unexpected results and does not

force the model to prove what the investigator wishes to

prove, the adoption of proper statistical methods, and a

careful appraisal of the results that avoids over-

interpretation and is performed within the framework of

current clinical and biological knowledge.

4.2. Model building

4.2.1. The initial set of variables
The starting set of potential prognostic factors for the
outcome of interest should of course include the main object
of interest of the study plus all covariates known (by a priori
knowledge, without looking at the current data) to have an
influence on the outcome, especially those correlated with
the main factor (as these are potential confounders). When
the set of initial variables is too large, the statistician may
begin excluding those variables that show the weakest
evidence of a relationship with the outcome during marginal
analysis; it is customary to consider a P-value threshold
equal to 0.10 or 0.20, although it is a strong initial selection
and not a recommended approach in general. In some cases
with very large numbers of initial covariates, it may be
useful to adopt some multivariate technique for data
reduction, such as identifying two or three principal
components from a large set of continuous variables and
including them among the regressors, provided that they
can be given a clinical interpretation.

In EBMT RBS, it is always advisable to include the
calendar year, unless the population was chosen in a limited
time span, because it captures sources of heterogeneity
related to scientific progress and other changes in transplan-
tation procedures that may have occurred during the study
period (new drugs being used before or after transplantation,

new diagnostic methods, admission to transplant of different
types of patients, and so on). Care must be used when
choosing the way in which to include the year. Treating it as a
continuous covariate, in particular with a linear effect, might
be incorrect,[30] while a meaningful categorisation might be
appropriate. Additionally, the centre effect could be con-
sidered. Such an effect would represent both the potentially
different standards of care (for example, more experienced
centres may have a reduced incidence of transplant-related
secondary negative events) or difference in procedures
(preservation of cells, use of T-cell depletion); it would also
represent the difference in patients in terms of characteristics
that are either not observable or not recorded (for example,
genetic differences; the EBMT registry currently includes
centres from approximately 60 countries all over the world).
Unfortunately, the centre effect cannot be considered a
simple covariate unless the number of centres is very small
(2–4 centres). Within a regression model, it can be included as
a random coefficient, or the estimation of the effects and their
standard deviations can be corrected to account for the
dependence of observations from the same centre by using
specific methods (see for example Andersen et al.,[31]

Glidden[32] or Yamaguchi et al.[33]).

4.2.2. Identifying the shape of the effects
The inclusion of the effect of a covariate X through a term
bX implies an assumption of linearity: any unity increase of
X has the same effect (measured by b) on the outcome
regardless of the starting value of X. This assumption may
not hold in some cases; for example, a 5-year difference in
age can have a different effect when comparing 30–35-year-
old patients than when comparing 70–75-year-old patients.
We can remove the linearity constraint by transforming X
into f(X) and including b � f(X) in the model. Identifying a
correct shape f( � ) of the effect of a continuous variable

Figure 5 Kaplan–Meier curves. Left: a graph showing the number of patients at risk at relevant time points. Right: a graph showing the pointwise
confidence bands.
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X is important; in particular, a variable may appear
non-significant only due to the fact that its effect strongly
violates linearity (for example, it has a U-shaped effect,
or an effect that is much stronger when X is low than
when X is high). Possible simple transformations for f( � )
are the logarithm or the power, but any mathematical
function, even with a complex shape, can in principle be
considered.

Sometimes the transformation of a continuous variable is
suggested by substantive knowledge, or by its observed
distribution. Thus, it is advisable to log-transform variables
with a strongly right-skewed distribution (very extreme
high values) because assuming linearity will likely over-
estimate the risk for very high values. Model validation
techniques based on the analysis of residuals can suggest
the correct shape for a transformation (see Section 4.3.4 for
Cox regression). Some mathematical techniques allow the
estimation of a flexible form of the effect of X from the data
using functions such as splines or other combinations of
polynomials.[18,28] The drawback of this latter approach is
that the shape of f( � ) is very well fit to the current data but
may be not general enough when looking at other data.
Moreover, the effect of X is nicely described graphically,
but it is difficult to quantify numerically. Thus, the use of
splines can be considered when an insight into the shape of
the effect of X is an important target of the study;
otherwise, choosing a simple transformation is more useful
when the model is used to quantify the risk, or when it is
necessary to generalise the model to other sets of data.

A special case of mathematical transformation for
continuous variables is the categorisation into classes,
using cut-points to define risk groups. Very often only two
groups (1 cut-point) are chosen. Passing from a continuous
to a categorical covariate is not recommended in view of
the loss of information. Nonetheless, it is very common,
and it is justified by the ease of describing the effect of X
(for example, to produce survival curves). It is also usually
performed when producing risk scores, although, as noted
above, specific statistical techniques should be used for this
purpose—techniques that are hardly seen in this type of
study. In particular, producing models affected by over-
fitting and proposing data-driven scores that in practice will
not perform well on different data sets should be avoided.
More remarks against categorisation (in particular, dichot-
omisation) and additional references can be found in
Royston et al.[34] One important ‘minimal’ requisite is that
before transforming X into a dichotomous covariate, it
should be verified that there is a dose–response effect for X,
both as a continuous variable and as a categorical variable
with several levels (see Section 4.2.3).

A good criterion to use when choosing cut-points is to
base it on clinical/biological knowledge; in this case, the
choice is not data-driven, and the results are comparable
with the existing literature. However, sometimes it is not yet
known how factor X affects the outcome, and it is a target
of the study to achieve more knowledge or improve a
prognostic scoring system based on the values of X. Thus,
current data must sometimes be used to identify a
categorisation. It is considered an ‘objective’ criterion
(though it is data-driven) to create subgroups by cutting
X at quantile values. For example, to create four subgroups

of approximately the same size (with 25% of the patients in
each), the cut-points would be Q1, the median and Q3. This
approach may be inefficient, however, because it does not
consider the effect of X on the outcome. In fact, other more
or less refined ‘outcome-oriented’ methods exist. One
example is a method proposed by Klein and Moeschber-
ger[17] (par. 8.6); some statistical software programs also
implement techniques of this type. A simple possibility is
performing a residual analysis: if the shape f(X) estimated
from the residuals is a steep increase of risk around X¼ c,
and before and after c the increase is rather small, then the
choice could be to dichotomise X at c.

So far, we have considered the identification of the shape
of the effect of a continuous variable X. The next section
considers the effect of a categorical factor.

4.2.3. Including categorical covariates
Let us consider the case that X is a dichotomous covariate
and assumes two possible values, 0 and 1, representing the
absence and presence of a certain characteristic, respec-
tively. The regression parameter b represents the effect of
the presence of that certain characteristic compared to the
case where it is absent.

If X has three (or, in general, k) possible levels coded as
0, 1, 2 (y up to k), then one of them is chosen as the
reference level (‘baseline’) and the others are compared to
the baseline. This is done either automatically by the
software once it is instructed that X is a ‘factor’ or a
‘categorical variable’ (and the baseline is specified; by
default, software programs may chose the first or the last
level as the baseline), or by using indicator (‘dummy’)
variables.

Table 5. Dummy variables for the phase of CML

X Dummy variables

Phase CP AP BC

Chronic phase (CP) 0 1 0 0
Accelerated phase (AP) 1 0 1 0
Blast crisis (BC) 2 0 0 1

Table 5 shows the three dummy variables corresponding

to k¼ 3 levels of the variable phase of CML. The effect of

phase when assuming that chronic phase is the baseline is

estimated by including in the regression model (k�1)¼ 2

dummy variables for the other two levels, that is, by

including AP and BC among the covariates.

The regression coefficient bAP (the beta for the variable

AP) represents the effect of having CML at accelerated phase

compared to chronic phase; similarly, bBC (the beta for the

dummy BC) represents the effect of having CML in blast

crisis compared to chronic phase. The effect of BC versus AP

is obtained as a difference: bBC�bAP. The effects for the

dummy variables are tested separately, but the overall test for

the presence of any effect of X (phase) should be performed

by defining H0 as bAP¼bBC¼ 0 and H1 as (bAPa0) OR

(bBCa0) OR (bAPabBC) and using the likelihood ratio test
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(or its alternatives, see note 38). Moreover, a correction for

the inflation of type I error could be applied. The

Bonferroni–Holm method is shown below.

The Bonferroni–Holm correction for multiple testing

The rule of Bonferroni–Holm is used to control for making

a type I error in a situation with multiple testing (Section

1.4). This correction should be considered when testing the

differences among more than two levels of a categorical

variable, but we could also consider a situation where two

groups are compared with respect to k different endpoints,

or according to a predefined analysis plan where there was

a set of hypotheses to be investigated; see Bauer[1] for

references. The procedure is first described and then

illustrated in Example 5, which assesses the effects of a

categorical variable with three levels in a multivariate

regression model.

There are k null hypotheses, each stating the absence of a

difference (in general notation, H0j: dj¼ 0). We want to

control the overall probability of making one or more false

rejections (that is, rejecting a true null hypothesis) so that it

is less than a pre-specified a (for example, a¼ 0.05). We

perform k tests, one for each null hypothesis, and then

order the P-values in ascending order: P(1)pP(2)p...P(k)

For each value occupying the j-th place, there is a threshold

with which to compare them, which is equal to a/(k�jþ 1).

The comparisons are performed in sequence starting from

P(1), and these comparisons are stopped when we have

P(j)4a/(k�jþ 1). All of the null hypotheses corresponding

to the ordered P-values smaller than p(j) are rejected; the

others cannot be rejected.

In the case that there are logical relationships between

the hypotheses such that the number of true hypotheses can

only be found in a set X, the Bonferroni–Holm procedure

may be too conservative; in other words, it may encounter

the opposite problem of failing to reject false null

hypotheses. As a solution, the Shaffer correction suggests

changing the thresholds for comparison by replacing the

denominators with max{x in X such that xpk�jþ 1}.

Example 5: Testing the differences among the levels of a

categorical factor (42 levels)

Consider the effect of the factor phase of CML with levels

chronic phase (CP, the baseline), accelerated phase (AP)

and blast crisis (BC) in a multiple regression model. We

have k¼ 3 tests for three comparisons: AP vs CP, BC vs

CP, and BC vs AP. The corresponding null hypotheses are

as follows: H01: bAP¼ 0 H02: bBC¼ 0 H03: bBC�bAP¼ 0.

We want to control the total ‘false discovery’ error

probability so that it is lower that a¼ 0.05. Performing a

test for each null hypothesis, we obtain three P-values, say

P1, P2 and P3, and suppose that P2oP1oP3.

� Compare P2 with a/k¼ 0.05/3¼ 0.017. If P240.017, then
none of the hypotheses can be rejected and the phase of
the disease is shown to have no impact.

� If P2p0.017, then compare P1 with a/(k�1)¼ 0.05/
2¼ 0.025. If P140.025, then only H02 can be rejected,
and it is proven only that patients in blast crisis behave
differently from the group in chronic phase.

� If P1p0.025, then compare P3 with a/(k�2)¼ 0.05/
1¼ 0.05. If P340.05, then H01 and H02 can be rejected,
but not H03, which means that the data do not support
the hypothesis that blast crisis and accelerated phase
behave differently. If P3o0.05, then all three hypotheses
can be rejected.

This is the Bonferroni–Holm correction. But, this is
the situation considered by Shaffer, where only certain
combinations of true/false for the three hypotheses make
sense. In fact, it is not possible that only two of them are
true and the third is not (for the transitive property, if
bAP¼ 0 and bBC¼ 0, it necessarily follows that
bBC�bAP¼ 0). Thus, the number of the true hypothesis
can be 0, 1 or 3 and X¼ {0, 1, 3}.At this point, the
threshold levels for the comparison of our P-values are:

� For the smallest P-value P(1) (P2 in our example): the
higher number in X that is p k¼ 3 is 3 a/3¼ 0.017.

� For the next P-value P(2) (P1 in our example): the higher
number in X that is p k�1¼ 2 is 1a/1¼ 0.05.

� For the highest P-value P(k) (P3 in our example): the
higher number in X that is p k�2¼ 1 is 1a/1¼ 0.05.

As can be seen, with this correction, it is easier to prove
that H01 is false.

One kind of transformation of the effect of a categorical
covariate with k levels is collapsing categories after having
verified that the levels to be combined show no relevant
different effect, and provided that the combined category
has a sensible clinical interpretation.

A special type of transformation for ordered factors is
assuming a linearity of the effect, or treating it as a
continuous covariate. In our example, if phase is included
as a continuous covariate, the effect of level 2 (BC) vs level
1 (AP) and the effect of level 1 (AP) vs level 0 (CP) are
assumed to be equal and are measured by one single
parameter b; the effect of level 2 (BC) vs level 0 (CP) will be
measured to be equal to 2b. This assumption makes the
model more parsimonious (one regression parameter is
estimated instead of two) and the risk score easier to
compute, but it must be verified. Fitting both the model
with phase as a continuous variable and the model with the
dummy variables AP and BC, the values b and 2b from the
first model must be compared with bAP and bBC�bAP,
respectively, and with bBC from the latter model. This type
of investigation can also be considered when assessing the
presence of a dose–response effect of a continuous variable
X when looking for cut-points (Section 4.2.2).

4.2.4. The selection of variables
Generally speaking, the decision on whether a variable
should be included in the model should take into account
the clinical relevance of the variable (a priori), of its
estimated effect (size and significance) and the interpret-
ability of the model. Of course, the evaluation includes a
careful investigation of the shape of the effect (Sections
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4.2.2 and 4.2.3). In addition, the statistician should
consider the consequences of the inclusion/exclusion in
terms of overall significance of the model, stability of the
effects of the other variables and validity of the model with
respect to the assumptions (Section 4.2.6). In particular, if
including or excluding a variable changes dramatically the
effects of other covariates or makes more evident the
violation of an important hypothesis (such as the propor-
tionality of the hazard functions in the Cox regression),
then it is necessary to understand why it is so by looking
at the distribution of the variable, at its correlation with
the other variables, or even at the influence of single
observations.

Regarding how many variables a model can include, the
rule of thumb is to limit the number so that there are 7–10
‘units of information’ (in survival analysis, only observed
events, not censored observations, count as units contain-
ing information, while in logistic regression, it is the total
sample size) per parameter to be estimated (a linear
continuous variable effect requires 1, as with dichotomous
variables; for a categorical variable with k levels you
‘spend’ k�1 degrees of freedom, and so on). Another
golden rule of model building is parsimony. Here, the
preferred model has only a few, relevant factors because it
makes efficient use of the information for the estimation, it
is simpler to interpret and it is more useful for being
generalised to populations other than the source popula-
tion. Too many prognostic factors may in fact lead to
overfitting, where the model fits the current data very well,
but is too ‘tailored’ to the data, and therefore, it may be
inadequate for other data sets. For the purpose of
controlling the number of covariates (more precisely, of
parameters) being included in a regression model, some
texts suggest rules based on the Akaike information
criterion.39

Identifying a model may actually require a circular
process. The effect of a variable or its shape can change
depending on the inclusion or exclusion of other variables,
and if a model appears unsatisfactory at the validation step,
it should be better identified. The complexity of the process
and of the issues involved is the main reason to avoid the
automatic selection procedures that are implemented by
many statistical software programs (sometimes called
‘stepwise’ regression routines40). Given that they all rely
only on significance without taking into account relevance,
interpretation, or any other ‘good sense’ or methodological
issue, automatic processes should be avoided, or used only
to select among variables with similar meaning, or when
verifying the presence of interactions.

4.2.5. Interactions
A statistical interaction between two variables X1 and X2 is
a modification of the effect (on a certain outcome variable
Y), and it occurs when the effect of one changes depending
on the level of the other.41 A statistical interaction can also
have a clinical interpretation; for example, a risk factor X1

has less impact in younger patients than it does in the
elderly (X2 is age), or the gender mismatch effect in SCT
(male recipients with female donors tend to have a higher
risk of death in many diseases) can be seen as an interaction
between patient gender and donor gender.

From a practical point of view, the interaction term is
usually introduced in the model containing X1 and X2 as
their product X1*X2 along with its beta:42

b1X1 þ b2X2 þ b3X1 � X2

Then, for two dichotomous covariates the effect of X1¼ 1
compared to X1¼ 0 is equal to b1 when X2¼ 0 and it is
equal to b1þ b3 when X2¼ 1. When X2 is continuous, the
effect of X1 depends on the value of X2, being equal to
b1þ b3 �X2. The test for H0: b3¼ 0 returns an assessment of
the significance of the interaction between X1 and X2.

The investigation of the presence of certain interaction
terms can be a specific objective in a study as a valid
approach alternative to subgroup analyses because there is
more efficient use of the information and the possibility of
testing the difference of an effect among subgroups.

Verifying the presence of interaction terms is also a final
phase of model identification. In the absence of clinical
criteria, all pairwise interactions between all the variables
included could, in principle, be assessed, but this would
lead to problems such as overfitting or multiple testing
(even if no interaction is present in the population, some
terms may turn out to be ‘significant’ by pure chance). In
practice, especially if there are many adjustment covariates
and there is a main factor of interest, the assessment
could be restricted to the interactions of the main factor
with all of the other covariates. In addition, significance
has little importance with respect to two other aspects:
whether the effect modification is relevant in size,
and whether it is interpretable in clinical or biological
terms. A significant interaction term that produces a rather
irrelevant effect modification may be neglected for the
sake of parsimony and simplicity of the model, while even a
weakly significant interaction (for example, a P-value
below 0.1 or 0.2, but not below 0.05) for which there
exists a clinical interpretation could be kept in the model if
it indicates a strong change of the effects. An uninterpre-
table (significant and relevant) interaction could be an
interesting result to investigate further, but it could also
be found due to pure chance or due to a model
misspecification.

These comments suggest defining in advance a few
interactions to examine on the basis of the literature and

39AIC¼�2 �Log-likelihoodþ kp, where p is the number of (relevant)
parameters in the model, and k is a constant, usually 2. This quantity
decreases as p begins to increase, up to the point where unnecessary
variables are included. For its application in the framework of the Cox
regression, see for example Klein and Moeschberger,17, par. 8.7.
40 The ‘forward’ approach adds the variables one after another, choosing
the most significant at each step, until no variable adds significant
information. The ‘backward’ procedure starts with all variables and
removes the least significant variable at each step, until the loss of
information becomes significant (between these two, the latter approach
is preferred, unless the initial set is very large). Some software programs
also implement combinations of forward and backward methods, or
other methods (for example, ‘best subset’).

41 Interactions among more than two variables (typically three) can in
principle be considered, but they hardly correspond to real biological
phenomena. They are in any case very difficult to interpret, and thus are
rarely seen.
42 To assess the presence of an interaction term X1*X2, the model must
be ‘hierarchical’, that is, it must include both main effects X1 and X2.

EBMT Statistical Guidelines

S30

Bone Marrow Transplantation



other considerations based on the current knowledge of the
phenomena being investigated, and to avoid (as usual)
decisions for model building based solely on significance.

As a final suggestion, when a certain adjustment variable
expected to be influential for the outcome appears
negligible according to the selected model, it may be worth
assessing if it acts on the outcome only through an
interaction with another covariate.

4.2.6. Model validation/diagnostic
This section focuses on methods for internal validation, or
diagnostics, the assessment of the validity of the fitted
model under many respects, including substantial validity
of the assumptions on which the model is based in the
observed data, goodness of fit (that is, good estimation of
the outcome from the explanatory variables) and robust-
ness with respect to particular observations. Several
validation methods exist depending on the type of
regression model used and on which aspect of the model
is being verified. Many methods are based on the analysis
of residuals, quantities that (generally speaking) express the
distance between the observed data and the predictions
obtained from the model. Others are based on measures of
the impact of each observation on the estimated model
(influence analysis).

Despite introducing this phase of model building at the end
of the section on regression, the model can be validated at any
step because validation also indicates how to correct the model
specification. For example, in Cox regression, a certain method
of residual analysis can be used to check the validity of the
hypothesis of proportionality of hazards for the covariates
included in the model, and can also indicate how to correct for
non-proportionality. We also saw the use of validation
techniques based on residuals to identify the functional form
of the effect of a continuous covariate (Section 4.2.2).

The amount of refinement of model building depends on
several aspects, but generally speaking the statistician should
be able to propose a model substantially valid with respect to
the main assumptions, and stable with respect to small
variations of the sample (for example, not influenced by
single, extreme observations) or to the inclusion/exclusion of
the variables. Increasing the goodness of fit should not be
considered a main objective of model building because there
are several negative consequences in case of overfitting: the
prediction performance of the model will be poor (that is, the
model may fit poorly with the outcomes for another sample of
data), and the prognostic value of a factor or of derived risk
scores will be small on an independent data set.

4.3. The Cox model
The Cox model is currently the most widely used
regression model for survival data.43 It is characterised
by two features: the assumption of PH and the lack of
specification of a functional form for the dependence of
the hazard function over time. The PH assumption was
introduced in Section 2.2. In the Cox model, it works by
assuming that the covariates act multiplicatively on the

hazard function, which depends on time only through a
baseline hazard function h0:

hðt; x1; x2; . . . ; xkÞ ¼ h0ðtÞ expðb1x1 þ b2x2 þ . . .þ bkxkÞ

The effect of a unit increase of X2 on the hazard while
keeping all other covariates Xj constant is measured by
the HR and obtained by exponentiating the coefficient b2:

hðt; x1; x2 þ 1; . . . ; xkÞ
hðt; x1;x2; . . . ; xkÞ

¼ expðb2Þ

It is worth recalling the important interpretation that the
HR is constant in time; that is, an increase of X2 has the
same effect on the hazard at the start of the follow-up as
at any time, even in the very long term. There is no change
of the effect over time. The effect of time is included only
in the baseline hazard. In the Cox model, the use of an
estimation technique based on a partial likelihood allows
us to leave the functional form of the baseline hazard
unspecified and thus to neglect it. This regression
technique focuses on the estimation of the effects of
covariates in relative terms; note in particular that the
Cox partial likelihood method does not produce an
estimate of the hazard corresponding to a certain
covariate pattern and at a certain time t. The latter can
be obtained using the betas estimated with Cox together
with a non-parametric estimate of the cumulative baseline
hazard; this is useful when plotting survival curves to
represent graphically the effect of covariates.

4.3.1. HRs in practice

� For a continuous covariate X with an estimated
coefficient b and y¼ exp(b), the HR measuring the effect
of an increase of, for example, 5 units is obtained as y5.

� For a categorical covariate with three levels (or in
general, k levels), with the first being the baseline and the
other two being represented by two dummy variables,
the effect of each level vs the baseline is given by HR
yj¼ exp(bj), and the HR between the two is obtained by
the ratio yj1/yj2. In the example of the phase of CML in
Section 4.2.3, the HR to compare BC to AP is yBC/yAP.

� If a three-level ordered categorical covariate is included
as a numeric variable with linear effect (Section 4.2.3),
then the HR of level 1 vs level 0 and of level 2 vs level 1 is
the same and is equal to y¼ exp(b); the HR of level 2 vs
level 0 is y2.

4.3.2. The stratified Cox model

A stratified Cox model has a different baseline hazard for
each of k subgroups of patients defined by a k-level
categorical variable (stratification factor) and assumes
that the effects of the other covariates are the same in each
stratum:

hðt; x1; . . . ; xk; stratumjÞ ¼ h0jðtÞ expðb1x1 þ b2x2 þ . . .
þ bkxkÞ

The assumption that all other covariates act in the same
way in each stratum can be relaxed by including stratum-

43 Because it is a model of a hazard function, it can also be used to model
the cause-specific hazard of an event with competing risks (Section 2.2.2).
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specific covariates. For example, with two strata, 1 and 2,
and X with different effects, the model will include:

X1 ¼
X in stratum 1
0 else

�
and X2 ¼

X in stratum 2
0 else

�

If a categorical variable X has an impact on the outcome
that cannot be assumed to be constant in time (that is, it
violates the PH hypothesis), then stratifying the model on
X removes the problem of violating proportionality, with
the drawback being that the effect of X is only ‘removed’,
but not estimated from the model.

4.3.3. Time-dependent covariates
Time-dependent covariates are, generally speaking, vari-
ables whose value changes with time. They are used in three
situations:

� When a characteristic changes during follow-up, such as
when a treatment is changed according to protocol or the
level of a certain biological parameter monitored during
follow-up changes.

� More specifically, when there is a change in the status of
the patient, which is relevant for subsequent outcome;
for example, when an event such as GVHD or second
transplant occurs (Section 2.1.6).

� When a covariate shows a non-proportional effect (see
Sections 4.3.4 and 4.3.5). In fact, a time-varying effect of
X would require a non-constant beta and thus b(t) �X,
which can be represented by b �X(t). In other words, to
represent a time-varying effect for a constant covariate,
we can include a constant effect for a time-varying
covariate.

The variation of a covariate in time is addressed by splitting
the individual follow-up time into time periods where the
value of the covariate is constant, and replacing the event
history of a patient with a series of histories along
consecutive periods; left-truncation (Section 2.1.4) is used
to account for delayed entry. An example is given in Table
6 for the case that X represents the occurrence of a second
transplant. The procedure is valid for any case of time-
varying covariate; when it varies continuously, the follow-
up is split into very small intervals.

Notice that in practice the majority of statistical software
programs implement time-dependent covariates within the
routines for Cox regression through specific programming
instructions. Thus, the user does not truly have to
manipulate the data set directly.44

Example 6: Use of a time-dependent covariate to include
the effect of second transplant in a Cox model
The computation of the time-dependent covariate is
illustrated here for two observations. Patient A does not
receive a second SCT and dies at time 4 while Patient B
receives a second SCT at time 2, and then dies at time 7.
The latter event history is split into two periods. In the first
period from time 0 to time 2, X is constantly equal to zero,

the patient has had no second SCT (yet), and the final
status is always 0, censored. The second period extends
from time 2 (delayed entry) to time 7, and X is equal to 1, a
second transplant was given, and the final status is equal to
the original one (in this case, the patient died). All other
covariates for B are the same in the two rows. For patient
A, there is only one row for the time period from 0 to 4, and
the survival status is as observed. The expanded data set
will thus have three rows to represent these two patients.

Table 6 Follow-up split for a time-dependent covariate X

Patient
id

Gender
(M¼ 1,
F¼ 2)

TstartTstop X (2nd
SCT);
No¼ 0,
Yes¼ 1

Surv (survival
status);

no¼ alive¼ 0,
yes¼ dead¼ 1

A 2 0 4 0 1
B 1 0 2 0 0
B 1 2 7 1 1

The outcome variable in the Cox model will be the triplet

given by the starting time, the end time and the survival

status, which accounts for delayed entry (Tstart, Tstop,

Surv). The HR for the covariate X compares the hazard of

death of two patients, alive at the same time, with the same

characteristics, except that one received a second transplant

before the time of comparison and the other did not. For the

interpretation of this HR, see the remarks in Section 2.1.6.

4.3.4. Validation of the Cox model
There are several methods for validating the Cox model as
illustrated by Klein and Moeschberger[17] (Chapter 11),
Therneau and Grambsch[18] (Chapters 4–7), and Hosmer
and Lemeshow[19] (Chapter 6). It is worth suggesting a
careful use of these techniques, especially when building a
model for prediction purposes.[28] This section briefly
introduces two validation methods based on the analysis
of residuals that are related to important aspects of model
building:

� the use of martingale residuals for the identification of
the shape of the effect of a continuous covariate (Section
4.2.2); and

� the use of (scaled) Schoenfeld residuals for verifying the
PH assumption.

Both techniques include a graphical evaluation based on
a scatter plot of residuals interpolated with a smooth line to
highlight trends of departure from the null, which is the
reference value corresponding to the ‘perfect’ fit.

Each model fit returns a set of martingale residuals, one
for each observation included in the sample. The residual
represents the difference between the actual survival status
observed and the risk of failure predicted by the model; a
positive (negative) residual indicates that the risk is
underestimated (overestimated). In an ideal situation of
perfect fit, the residuals should be equal to zero; with a
properly specified model, they should vary randomly
around zero. If the model is not well specified with respect
to the effect of a variable X, then the residuals tend to

44 In R this manipulation is necessary. Some libraries provide functions
to do it, for example mstate or Epi. Continuous X(t) can be computed
using the command survSplit from the in-built survival library.
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distribute according to a specific trend dependent on the
value of X and not randomly around zero. This allows a
graphical evaluation of the shape of the effect of X, as
illustrated in Figure 6.

At each model fit, a series of (scaled) Schoenfeld
residuals for each observed failure is estimated for each
covariate included in the model. If the effect of a covariate
X is constant over time, these residuals distribute at
random around the reference value zero, without
trends associated with the observed failure times. If,
however, the effect of X depends on time, such that we can
think of a regression coefficient beta that is a function of
time, b(t), then a graph of the residuals vs the observed
failure times (or a transformation of them, such as ranks)
will suggest the shape of b(t), as shown in Figure 7. The
observed trend can be tested for significance; for example,
Therneau has developed a routine in R (cox.zph) for
performing the tests for the (linear) trends for each
covariate and for performing a global test for the
hypothesis that PH holds.

Another customary way to check for PH is by including
some time-varying effect of X through a time-dependent
variable representing the interaction of X with time, such
as X � log(t) or Xt (Section 4.3.3), and testing its
significance. This method has the limitation that the
assessment is performed only for a specific type of
violation of the independence on time.

4.3.5. When the PH assumption does not hold
Non-PH for a covariate X can be explained in terms of
auto-selection of the ‘fittest’ patients in the subgroup with
higher risk, for which the difference from the low-risk
patients fades over time. This mechanism is formally
illustrated in the context of frailty models[18,35] that consider
the presence of unobserved heterogeneity, a source of
variation that is not imputable to the covariates included in

the model.45 In some cases, there is an expected biological
explanation, such as when a characteristic is a risk factor
for early post transplant infection, and thus, this mechan-
ism has an effect on the risk of death that diminishes and
then disappears over time. In another situation, the
unobserved characteristic may have an effect when it is

Figure 6 Illustration of the use of martingale residuals to identify the effect of a covariate X in the Cox model. Left: residuals from a model not including
X. The graph suggests including X as a risk factor: in fact, the estimated risk is too high for small values of X and too low for large values of X. Linearity
appears to be inappropriate, as the slope is not constant. Ln(X) appears to be a proper choice. Right: residuals from a model including ln(X). The residuals
distribute approximately at random around 0 without apparent trends related to the covariate ln(X): the shape is appropriate.

Figure 7 Use of scaled Schoenfeld residuals to detect non-PH for the
effect of a covariate ‘Age’ in the Cox model. The residuals from the model
including X are plotted in this case vs the ranks of the observed failure
times. The graph suggests that the covariate (‘Age’) has a decreasing effect
as risk factor, which tends to become nonsignificant in time (the confidence
interval includes the straight line through 0).

45 Frailty models are extensions of the Cox regression to include random
effects, represent unobserved heterogeneity or create dependence among
observations from the same cluster, such as multiple endpoints for the
same patient, or more simply observations from patients grouped
according to the centre (to account for the centre effect). The latter
situation can also be addressed with a ‘marginal’ approach that corrects
the variance and covariance matrix (in R, see the options ‘frailty’ and
‘cluster’ within the coxph procedure, respectively).
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associated with a protection against relapse, and then the
hazards will tend to diverge in the long term. A strict
proportionality of hazards is perhaps not met in the
majority of cases, but strong violations of the PH
assumption affect the validity of the Cox model. When
the effect of X is non-proportional, the true HR is time-
dependent, and it should be described by a function HR(t);
the estimated time-fixed HR is some kind of weighted
average of HR(t), and the corresponding significance test
does not refer to the effect at a specific point in time. The
Cox model can be amended for non-proportionality of the
effect of X in two ways:

� by including X as a stratification factor; or
� by adding a time-varying effect for X using a time-

dependent covariate.

Stratification is a good solution when the X is categorical or
it can be categorised to define clinically relevant subgroups
and its effect is not an object of interest.

Alternatively, when the time-varying effect of X is of
interest, the model must include X plus a time-dependent
covariate X(t)¼X � f(t) (as in fact X(t) represents the
interaction of X with a function of time, f(t)) (Section
4.3.3). Typical choices are f(t)¼ t or f(t)¼ log(t) to
represent effects that are at first rather stable but then
disappear after some time, or step functions. A common
approach to gaining some insight into early and late effect
is by including two covariates:

X1 ¼
1 if time � t
0 else

�
for early effect;

X2 ¼
1 if time4t
0 else

�
for late effect

As was seen in Section 4.3.4, the function f(t) may be
identified by analysing the Schoenfeld residuals. The
computation of X(t)¼X � f(t) is performed by splitting the
follow-up and expanding the data set as illustrated in
Section 4.3.3 (beware of this common mistake: a simple
multiplication of the columns X and f(T), where T is the
observed survival time, is NOT a time-varying covariate).
With the model

hðt; x; ðother covariatesÞÞ ¼ h0ðtÞ expðb1xþ b2x � f ðtÞ þ . . .Þ

the HR for a unit increase of X depends on the time t and is
computed as:

HRðtÞ ¼ expðb1 þ b2 � f ðtÞÞ

In extreme situations of departures from PH, such as when
the hazard functions cross, the results of a Cox regression
may be completely misleading. When a covariate X defines
two hazard curves that cross, despite a substantial
difference in long-term survival, because of early differ-
ences in the opposite direction, the estimated HR from a
Cox model may be close to zero. Even if the model is
amended by adding time-dependent covariates for the
effect of X, the hazard function HR(t) is rarely a true object

of interest, and in particular a global test for HR(t) is rather
useless. The primary research questions would normally
focus either on short- or long-term outcomes, and there are
specific methods to address each case.

The long-term outcomes are often of primary research
interest. When focusing on the analysis of the survival
probability at specific points in time, methods such as those
proposed by Klein et al.[13] and Logan et al.[14] should be
used. In particular, approaches based on pseudo-values
also allow adjusted comparisons. Another issue of interest
is the probability of cure, or the probability that the risk of
failure decreases towards levels that are comparable to
those of the general population. In paediatric oncology
research, the fraction of cured patients is particularly
relevant. Cure models[15,16] investigate cure rates and
survival times separately. In the presence of a cure and
when follow-up is sufficient, they are more efficacious in
detecting treatment differences with non-PH than a Cox
regression.

Finally, another possible approach to the analysis of
time-varying effects is to apply models that do not require
PH. There are several alternative methods to the Cox
regression, although they are (still) seldom used in clinical
applications. For example, the additive model by Aalen, as
well as some generalisations of it,[36] and the method of
dynamic prediction by landmarking[37] are two possibilities.
See also the ‘Inventory’ by Latouche[26] for more recent
methods of survival analysis that serve as alternatives to the
‘classic’ methods.

4.4. Stratification, matching and propensity scores1
The methods of traditional epidemiology used for
controlling confounding, such as stratified comparisons
and matched-paired analysis (Section 1.3), are inferior
with respect to regression modelling because the latter is
capable of using all of the information available,
controlling several confounders simultaneously, and
providing correct and precise estimates of the effects/
differences of interest. However, those methods become
more interesting when stratification and matching are
based on propensity scores (PSs), instead of on one or two
covariates as in the traditional approach.
The framework where PSs are used is the comparison

of two treatment groups (say, treated and not-treated) in
a non-randomised study.46 The main problem is that the
two groups differ with respect to many characteristics,
which actually could have determined the decision to treat
or not. Thus, the idea is to compare each treated patient
to a not-treated patient who, on the basis of the
characteristics, had the same probability of getting the
treatment; this probability is called the PS.47

46 This is also the context where adjusted survival curves[42] can be used,
see note 8.
47 This idea is theoretically supported by work initiated by Rosenbaum
and Rubin,[46] which shows that: (1) given the PS, the distribution of the
covariates is the same in treated and not-treated groups, (2) under a
condition called ‘strong ignorability’ (which corresponds to the assump-
tion that there is no unmeasured confounder and that given the
covariates there is no certainty regarding which treatment the patient will
receive) and given a fixed PS, the difference of outcomes in treated and
not-treated groups yields an unbiased estimate of the treatment effect.
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The PSs are computed for each patient from the
covariates, usually applying logistic regression; some
statisticians criticise the habit of including a very large
number of covariates in this model for PS, and
recommend principally using covariates with some effect
on the outcome being compared. Then, the analysis of the
treatment effect can be performed in different ways.

One approach is the matched-pair analysis, possibly
adjusted for other covariates (those associated with the
outcome). For each treated patient, one or more ‘control’
not-treated patients are chosen from among those with the
‘same’ PS (for proper selection methods, see D’Agostino[38]).
It must be verified that the two groups selected for the
analysis are similar with respect to the characteristics
(possibly avoiding reliance on significance tests;
standardised differences may be used instead48). As in any
matched-pair analysis, it is fundamental that the statistical
methods used to compare treatments account for the
dependence within each pair. (Thus, it is recommended to
use paired t-tests, McNemar’s test, conditional logistic
regression, stratified Cox regression, and so on.) As in any
‘traditional’ matched-pair analysis, the drawback is a loss of
information because of the reduced size of the control group.
However, this approach is a good solution when there are
few patients in the ‘study’ group, where a regression model
would allow control of only a few covariates.

Another approach is the stratified estimation of
treatment effect. Observations are stratified in a few
groups (usually 5, at most 10) on the basis of quantiles of
the distribution of PS and then estimates of the effect of
treatment in each stratum are computed and combined
using some weighted average. We will not go any further
in the illustration of this approach, which is rather
unsatisfactory,[39,40] and should in any case be improved
against the risk of residual confounding by obtaining the
effect estimate in each stratum through regression,
including covariates.[39]

Other estimators of the treatment effect are derived using
the inverse-weight technique. It was shown[39] that including
quantities derived from regression in the estimator yields an
efficient estimator that is also robust with respect to model
misspecification. However, the illustration of these methods
is beyond the scope of this document.

Although these methods may appear unduly compli-
cated, many statisticians agree that they have better
properties than a simple regression model adjusted for PS,
treatment and perhaps other covariates.[38–40]At this point,
one could wonder what is gained by using PSs instead of
applying a regression on all relevant covariates as illustrated
in Section 4.1. It must be said that among statisticians, there
is no consensus on this. One argument in favour of PS is
that, when the two groups are indeed quite different with
distributions of covariates of X overlapping only in certain
regions, the relationship between covariates and response is
determined only by the treated patients in one region, and
only by the not-treated patients in another, which means
that in fact the relationship is extrapolated. However, if the
two groups are strongly incomparable with respect to

relevant characteristics, are we sure they should be com-
pared at all? Perhaps the statistician and the investigators
should consider whether it would make sense to compare
only cases with similar distributions while leaving out the
most extreme cases; then, the usual regression could be
sufficiently useful.

Conflict of interest

The author declares no conflict of interest.

Acknowledgements

L. de Wreede contributed to the final version. All
members of the EBMT Statistical Committee reviewed
the Guidelines and agreed with the final version. SI has
received grant support through her research position at
the Tor Vergata University of Rome.

References

1 Bauer P. Multiple testing in clinical trials. Stat Med 1991; 10:
871–890.

2 Marubini E, Valsecchi MG. Analysing Survival Data from
Clinical Trials and Observational Studies. Wiley: New York, 2004.

3 Beyersmann J, Gastmeier P, Wolkewitz M, Schumacher M. An
easy mathematical proof showed that time-dependent bias
inevitably leads to biased effect estimation. J Clin Epidemiol
2008; 61: 1216–1221.

4 Simon R, Makuch RW. A non-parametric graphical repre-
sentation of the relationship between survival and the
occurrence of an event: application to responder versus non-
responder bias. Stat Med 1984; 3: 35–44.

5 Putter H, Fiocco M, Geskus RB. Tutorial in biostatistics:
competing risks and multi-state models. Stat Med 2007; 26:
2389–2430.

6 Keiding N, Klein JP, Horowitz MM. Multi-state models and
outcome prediction in bone marrow transplantation. Stat Med
2001; 20: 1871–1885.

7 Iacobelli S, Apperley J, Morris C. Assessment of the role of
timing of second transplantation in multiple myeloma by
multistate modeling. Exp Hematol 2008, 1567–1571.

8 Iacobelli S. Statistical modeling of complex disease histories in
Bone Marrow Transplant. Guidelines for proper use and
interpretation of the Cox model for the European Group for
Blood and Marrow Transplantation. 2004. Available from the
EBMT website www.ebmt.org.

9 van Houwelingen HC, Putter H. Dynamic predicting by
landmarking as an alternative for multi-state modeling: an
application to acute lymphoid leukemia data. Lifetime Data
Anal 2008; 14: 447–463.

10 Klein JP, Rizzo JD, Zhang MJ, Keiding N. Statistical methods
for the analysis and presentation of the results of bone marrow
transplants. Part 1: Unadjusted analysis. Bone Marrow
Transplant 2001; 28: 909–915.

11 Klein JP, Keiding N, Shu YY, Szydlo RM, Goldman JM.
Summary curves for patients transplanted for chronic myeloid
leukaemia salvaged by a donor lymphocyte infusion: the
current leukaemia-free survival curve. Br J Haematol 2000;
109: 148–152.

12 Liu, Logan, Klein JP. Inference for current leukemia free
survival. Lifetime Data Anal 2008; 14: 432–446.

13 Klein JP, Logan B, Harhoff M, Andersen PK. Analyzing
survival curves at a fixed point in time. Stat Med 2007; 26:
4505–4519.

48 For example, the standardised difference of two averages is: 100� �x1��x0j jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
1
þs2

0ð Þ=2
p ,

where sj
2 for j¼ 0, 1 is the variance in group j.

EBMT Statistical Guidelines

S35

Bone Marrow Transplantation

www.ebmt.org


14 Logan B, Klein JP, Zhang MJ. Comparing treatments in the
presence of crossing survival curves: an application to Bone
Marrow Transplantation. Biometrics 2008; 64: 733–740.

15 Corbiere F, Joly P. A SAS macro for parametric and
semiparametric mixture cure models. Comput Meth Programs
Biomed 2007; 85: 173–180.

16 Sposto R. Cure model analysis in cancer: an application to
data from the Children’s Cancer Group. Stat Med 2002; 21:
293–312.

17 Klein JP, Moeschberger ML. Survival Analysis. Techniques for
Censored and Truncated Data. 2nd edn. Springer: NewYork, 2003.

18 Therneau TM, Grambsch PM. Modeling Survival Data:
Extending the Cox Model. Springer: Berlin, 2000.

19 Hosmer D, Lemeshow S, May S. Applied Survival Analysis:
Regression Modeling of Time to Event Data, 2nd edn. Wiley:
New York, 2008.

20 Gooley TA, Leisenring W, Crowley J, Storer BE. Estimation
of failure probabilities in the presence of competing risks: new
representation of old estimators. Stat Med 1999; 18: 695–706.

21 Gray RJ. A class of K-sample tests for comparing the
cumulative incidence of a competing risk. Ann Stat 1988; 16:
1141–1154.

22 Fine JP, Gray RJ. A proportional hazard model for the
subdistribution of a competing risk. JASA 1999; 94: 496–509.

23 Klein JP, Andersen PK. Regression modeling of competing
risks data based on pseudo-values of the cumulative incidence
function. Biometrics 2005; 61: 223–229.

24 Dignam JJ, Kocherginsky MN. Choice and interpretation of
statistical tests used when competing risks are present. J Clin
Oncol 2008; 26: 4027–4034.

25 Logan BR, Zhang MJ, Klein JP. Regression models for hazard
rates versus cumulative incidence probabilities in haemato-
poietic cell transplantation data. Biol Bone Marrow Transplant
2006; 12 (Suppl 1): 107–112.

26 Latouche A.. Improving statistical analysis of prospective
clinical trials in stem cell transplantation. An inventory of new
approaches in survival analysis’. Technical Report of the
CLINT—Establishment of infrastructure to support Interna-
tional Prospective Clinical Trials in Stem Cell Transplantation,
2010. Available from COBRA Preprint Series, Art. 70. http://
biostats.bepress.com/cobra/ps/art70 .

27 Klein JP. Modeling competing risks in cancer studies. Stat
Med 2006; 25: 1015–1034.

28 Harrell Jr FE. Regression Modeling Strategies. Springer:
Berlin, 2001.

29 Schemper M, Smith TL. A note on quantifying follow-up in
studies of failure time. Control Clin Trials 1996; 17: 343–346.

30 Klein JP, Rizzo JD, Zhang MJ, Keiding N. Statistical methods
for the analysis and presentation of the results of bone marrow
transplants. Part 2: Regression modelling. Bone Marrow
Transplantation 2001; 28: 1001–1011.

31 Andersen PK, Klein JP, Zhang MJ. Testing for centre effects
in multi-centre survival studies: a Monte Carlo comparison of
fixed and random effects tests. Stat Med 1999; 18: 1489–1500.

32 Glidden DV, Vittingho E. Modeling clustered survival data
from multicentre clinical trials. Stat Med 2004; 23: 369–388.

33 Yamaguchi T, Ohashi Y, Matsuyama Y. Proportional hazards
models with random effects to examine centre effects in
multicentre cancer clinical trials. Stat Meth Med Res 2002; 11:
221–236.

34 Royston P, Altman DG, Sauerbrei W. Dichotomizing con-
tinuous predictors in multiple regression: a bad idea. Stat Med
2006; 25: 127–141.

35 Statistical Methods in Medical Research 1994 Vol. 3 (Five
papers on frailty models for heterogeneity and dependence).

36 Scheike TH, Zhang MJ. Extensions and applications of the
Cox-Aalen survival model. Biometrics 2003; 59: 1036–1045.

37 van Houwelingen HC. Dynamic prediction by landmarking in
event history analysis. Scand J Stat 2007; 34: 70–85.

38 D’Agostino Jr RB. Tutorial in biostatistics. Propensity score
methods for bias reduction in the comparison of a treatment to a
non-randomized control group. Stat Med 1998; 17: 2265–2281.

39 Lunceford JK, Davidian M. Stratification and weighting via
the propensity score in estimation of causal treatment effects: a
comparative study. Stat Med 2004; 23: 2937–2960.

40 Senn S, Graf E, Caputo A. Stratification for the propensity
score compared with linear regression techniques to assess the
effect of treatment or exposure. Stat Med 2007; 26: 5529–5544.

41 Wei LJ, Glidden DV. An overview of statistical methods for
multiple failure time data in clinical trials. Stat Med 1997; 16:
833–839.

42 Cole SR, Hernán MA. Adjusted survival curves with inverse
probability weights. Comput Meth Prog Biomed 2004; 75: 45–49.

43 Kalbfleisch JD, Prentice RL. The Statistical Analysis of Failure
Time Data. 2nd edn. Wiley: New York, 2002.

44 Fine JP, Jiang H, Chappell R. On semi-competing risks data.
Biometrika. 2001; 88: 907–919.

45 Scheike TH, Zhang MJ. Flexible competing risks regression
modeling and goodness-of-fit. Lifetime Data Anal 2008; 14:
464–483.

46 Rosenbaum PR, Rubin DB. The central role of the propensity
score in observational studies for causal effect. Biometrika
1983; 70: 41–55.

47 Scrucca L, Santucci A, Aversa F. Competing risk analysis
using R: an easy guide for clinicians. Bone Marrow Transplant
2007; 40: 381–387.

48 Scrucca L, Santucci A, Aversa F. Regression modeling of
competing risk using R: an in depth guide for clinicians. Bone
Marrow Transplant 2010; 45: 1388–1395.

49 de Wreede L, Fiocco M, Putter H. mstate. An R package for
the analysis of competing risks and multi-state models. J Stat
Softw 2011; 38: 1–30.

50 de Wreede L, Fiocco M, Putter H. The mstate package for
estimation and prediction in non- and semi-parametric multi-
state and competing risks models. Comput Meth Prog Biomed
2010; 99: 261–274.

Appendix

Procedures/commands in R, SAS and SPSS
For the purpose of helping new users perform their analyses, we
provide here a list of procedures and instructions for the methods
indicated in the previous chapters that are available in the statistical
software packages R, SAS and SPSS. These three software programs
are very commonly used in clinical analysis, but other reliable
programs may provide good tools for survival and event-history
analysis, for example STATA.
R is a reliable software package that is distributed freely on the web

(http://www.r-project.org).49 Although it may appear difficult to use, we
encourage investing some time and patience in learning how to use it,
especially if the user is willing to apply more than the usual standard
methods of survival analysis. Consider also that the majority of basic
statistical procedures can be applied through a menu-based interface
(R Commander, for which you will need to install the library Rcmdr),
and that there is abundant material available to facilitate the use of this
program.
This list is not an exhaustive companion for statistical analysis; it is

only intended to help new users quickly find material to start their
search in the Help pages of the software.

49 The website provides the R software, general manuals, and other
useful material or links. Additional programs for specific methods are
available from local websites (R Cran). The programs (all documented
with help files and a manual in pdf format) can be easily and quickly
installed online or downloaded as archive files and then installed.
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Table 7: Procedures in R, SAS and SPSS for the description of categorical and continuous variables

R SAS SPSS

Description

Categorical variables-
tables

Table proc freq frequencies; crosstabs; tables

Quantitative variables-
indexes (and graphs)

summary;

quantile

(boxplot; hist)

proc

univariate;

proc means

frequencies/for¼ not/stat¼ min max mean

median; summarize; examine;

descriptives; means

Differences in k groups of a continuous, normal variable

k¼ 2, t-Test t.test proc ttest t-test

k42, ANOVA aov, lm, anova proc anova anova; oneway; summarize; glm

Non-parametric tests for differences in k groups

Continuous variable,
k¼ 2, Mann–Whitney test

wilcox.test proc npar1way npar tests

Continuous variable,
k42, Kruskal–Wallis

kruskal.test proc npar1way npar tests

Categorical variable,
w2-test

chisq.test proc freq/chisq crosstabs /stat¼ chisq; npar tests

Categorical variable,
k¼ 2, Fisher exact test

fisher.test proc freq/exact crosstabs /stat¼ sher;

npar tests

Association between two continuous covariates

Linear correlation cor(method ¼
‘‘pearson’’)

proc corr

pearson

correlation

Association in general,
non-parametric tests

cor(method ¼
‘‘kendall’’,

‘‘spearman’’)

proc corr

kendall

spearman

nonpar corr

Table 8: Procedures in R, SAS and SPSS for the description of the occurrence of events

R SAS SPSS

Survival-like endpoints library(survival)

Kaplan–Meier estimates survt proc lifetest km

Log-rank test and others survdiff proc lifetest option /compare in km

Cox regression coxph proc phreg Coxreg

Competing risks library(cmprsk) macros exists macros exists

Cumulative incidence
estimates

cuminc -

Gray test cuminc —
Fine and Gray regression crr —
Events before a certain time, complete follow-up

Regression models glm (family: binomial,

link¼ ’’logit’’)

proc logistic; proc

catmod

logistic regression;

genlog

The R library cmprsk has to be downloaded from a R Cran and installed; references for using it are the manual of the library, by Gray and the papers
(proposing complementary software) by Scrucca et al.[47,48] Also the library mstate (created for multi-state models) can compute cumulative incidence curves.
See the papers by de Wreede et al.[49,50] Many useful SAS macros, including for competing risks, can be found from the Wisconsin Medical College website.
Most of the procedures described in these guidelines are readily available in SPSS, an important exception being the methods for competing risks; an SPSS
macro for the cumulative incidence estimator was created by S Le Cessie of the Leiden Department of Medical Statistics, and is available from her website.
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