STEPPING OUT:
THE ROLE OF EXERCISE IN REHABILITATION POST HSCT

NEW STRATEGIES AND OUTCOMES

Speaker:
Joachim Wiskemann, PhD
Scientific Coordinator & Co-Head Working Group „Physical Activity and Cancer“
Unit „Preventive Oncology“ (Prof. Ulrich) and Unit „Medical Oncology“ (Prof. Jäger)
National Center for Tumor Diseases – Heidelberg, Germany

38th Annual Meeting of the European Group for Blood and Marrow Transplantation
28th Meeting of the EBMT Nurses Group

Geneva – 01st April 2012

Outline

→ Background: Role of Ex-Reha in Cancer
→ Indication for Exercise in SCT
→ State of the Art: Exercise in SCT Patients
→ Result from new Studies
→ Conclusion and Future Directions
Outline

→ Background: Role of Ex-Reha in Cancer
→ Indication for Exercise in SCT
→ State of the Art: Exercise in SCT Patients
→ Result from new Studies
→ Conclusion and Future Directions

Epidemiology → PA and Cancer Prevention

<table>
<thead>
<tr>
<th>Tumor</th>
<th>EVIDENCE-Classification: PA in Primary Prevention</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WHO (2002)</td>
</tr>
<tr>
<td>Colon</td>
<td>convincing</td>
</tr>
<tr>
<td>Breast</td>
<td>convincing</td>
</tr>
<tr>
<td>Prostate</td>
<td>possible</td>
</tr>
<tr>
<td>Endometrium</td>
<td>possible</td>
</tr>
<tr>
<td>Rectum</td>
<td>insufficient</td>
</tr>
<tr>
<td>Pancreas</td>
<td>insufficient</td>
</tr>
<tr>
<td>Lung</td>
<td>insufficient</td>
</tr>
<tr>
<td>Other tumor entities</td>
<td>insufficient</td>
</tr>
<tr>
<td>Colon</td>
<td>convincing</td>
</tr>
<tr>
<td>Breast</td>
<td>convincing (postmenopausal) limited convincing (premenop.)</td>
</tr>
<tr>
<td>Prostate</td>
<td>possible</td>
</tr>
<tr>
<td>Endometrium</td>
<td>possible</td>
</tr>
<tr>
<td>Rectum</td>
<td>- (tentative no)</td>
</tr>
<tr>
<td>Pancreas</td>
<td>limited convincing</td>
</tr>
<tr>
<td>Lung</td>
<td>limited convincing</td>
</tr>
<tr>
<td>Other tumor entities</td>
<td>No possible</td>
</tr>
</tbody>
</table>
Epidemiology → PA and Survival after Cancer

Breast → 6 Studies:
Risk reduction in cancer-specific mortality 34%; Reduced overall mortality after BC therapy 41%

Ibrahim & Al-Homaidh 2010 (Med Oncol)

Colon → 4 Studies:
40-60% lowered risk of overall and cancer-specific mortality

Haydon et al. 2006 (Gut); Meyerhardt et al. 2006-2009 (JCO)

Prostate → 1 Study:
40-60% risk reduction in overall and cancer-specific mortality

Kenfield et al. 2011 (JCO)

PubMed → Exercise and Cancer

- **SURVIVAL**
- **PHYSIOLOGICAL**
- **PSYCHOSOCIAL**
- **SAFETY**

Number of studies vs Year:
Guidelines

American College of Sports Medicine Roundtable on Exercise Guidelines for Cancer Survivors

Schmitz et al. 2010 - MSSE

Evidence → Exercise & Cancer

<table>
<thead>
<tr>
<th></th>
<th>Safety</th>
<th>Aerobic Fitness</th>
<th>Strength</th>
<th>Flex</th>
<th>Body comp</th>
<th>QoL</th>
<th>Fatigue</th>
<th>Other Psychosocial</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast (during)</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>-</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>(anxiety)</td>
<td>-</td>
</tr>
<tr>
<td>Breast (post)</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>(depression)</td>
<td>(function)</td>
</tr>
<tr>
<td>Prostate</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>-</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>(pain)</td>
<td>(lymphedema)</td>
</tr>
<tr>
<td>Loco</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gyn</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Home (no HSCT)</td>
<td>-</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Home (HSCT)</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>-</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A= many RCTs
B= few RCTs
C= non-RCTs, observational studies
Recommandation of the Expert Panel

1. Return to activities as soon as possible post surgery
2. Avoid inactivity
3. 150 minutes PA per week of moderate intensity

→ No specific Recommandations possible due to lacking informations on „received“ exercise dose!

Schmitz et al. 2010 - MSSE

Outline

→ Background: Role of Ex-Reha in Cancer
→ Indication for Exercise in SCT
→ State of the Art: Exercise in SCT Patients
→ Result from new Studies
→ Conclusion and Future Directions
Indications for physical exercise in HSCT I

Reduced physical performance status

Immediately before allo-HSCT (White et al., 2005, Chest)
- 58% of all patients had a reduced *endurance capacity*
- 39% of all patients had a reduced *strength capacity*
- 80% of all patients had an impaired *ventilatory capacity*

Immediately before allo-HSCT (Morishita et al., 2011; SuppCareCancer)
- Significant reduced *hand grip* and *knee extensor strength*
- Significant reduced *6-Minute Walk Distance*
- Significant reduced *physical functioning* and *QoL*

→ comparable with own data

Psychophysical Constitution prior to allo-HSCT

(Endurance Performance – 6MWT)

Psychophysical Constitution prior to allo-HSCT
(Max. Isometric Force – Handheld Dynamometry)

Upper Extremities

Lower Extremities

Psychophysical Constitution prior to allo-HSCT
(Quality of Life - EORTC)

EORTC QLQ C30

1Reference Values obtained from EORTC Manual, Scott et al. 2008
Indications for physical exercise in HSCT I

Reduced physical performance status

Immediately before allo-HSCT (White et al., 2005, Chest)
- 58% of all patients had a reduced endurance capacity
- 39% of all patients had a reduced strength capacity
- 80% of all patients had an impaired ventilatory capacity

Immediately before allo-HSCT (Morishita et al., 2011; SuppCareCancer)
- Significant reduced hand grip and knee extensor strength
- Significant reduced 6-Minute Walk Distance
- Significant reduced physical functioning and QoL

≈ comparable with own data

~ 2 year after allo-HSCT (Kovalszki et al., 2008; BMT)
- More than 70% had a reduced endurance/strength capacity
- 90% of all patients had an impaired ventilatory capacity

Indications for physical exercise in HSCT II

Late effects allo-HSCT

- Exercise-induced shortness of breath, weakness (Baker et al., 2010, Leukemia)
- Functional performance substantially lower (physical function and role function) (Mitchell et al., 2010, BMT)
- 70% Hypertension, 30% Diabetes after two years (Majhail et al., 2009, BMT)
- 49% metabolic syndrome after 3 years (Majhail et al., 2009, BMT)
- Osteoporosis, neurosensory impairments, tremor, health-related quality of life, fatigue, psychological distress (Baker et al., 2010, Leukemia; Andrykowski et al., 2005, JCO; Hjermstad et al., 2004, BMT)

⇒ All late effects: Highly Inactivity-associated
Outline

→ Background: Role of Ex-Reha in Cancer

→ Indication for Exercise in SCT

→ State of the Art: Exercise in SCT Patients

→ Result from new Studies

→ Conclusion and Future Directions

Exercise Interventions in HSCT Patients I

To date: 23 published studies examining the effect of physical exercise in the context of HSCT

- 10 Studies in allo-HSCT, 7 in auto-HSCT, 6 mixed populations
- Often Feasibility-Studies (small sample sizes, mix of allo- and auto-HSCT)
- Different intervention strategies (aerobic vs. resistance training vs. mixed types exercise vs. multimodal strategies)
- Variety of outcomes and assessment methods
- Mostly setting specific intervention strategies (inpatient vs. outpatient)

→ overall: very heterogeneous designs & methods

(Wiskemann et al., 2008, BMT; Spence et al., 2010, Cancer Treat Rev; Wolin et al., 2011 Leukemia)
Exercise Interventions in HSCT Patients II

Reported Effects:

- Stabilization effect on physical performance during inpatient period
- Improvements after HSCT (endurance, muscle strength)
- Positive effects on psychosocial and physical variables
 → QoL (predominantly functional subscales)
 → Body composition (weight gain)
 → reduced intensity of side-effects (e.g. nausea, vomiting, diarrhea, pain, sleep-disturbances)
 → faster hemato-/immunological reconstitution

→ overall: very heterogeneous results
→ Need for larger RCTs to confirm reported effects

(Wiskemann et al., 2008, BMT; Spence et al., 2010, Cancer Treat Rev; Wolin et al., 2010; Leukemia)

Exercise Interventions in Pediatric HSCT Patients

To date: 3 (4) published studies examining the effect of physical exercise in the context of HSCT

- All feasibility-studies (small sample sizes)
- Intervention strategies (3-5x/week → ~ 90% Adherence)
 (combined endurance and resistance training → in-patient)

Results

- No adverse events & negative effects on immune recovery
- Impaired strength capacity (from -28% till -65%)
- Increased physical fitness, functional mobility & QoL
- Tentative effects on dendritic cells

(Wolin et al. 2011, Leukemia; Rosenhagen et al., 2011 Clin Pediatric; Hadamofsky et al. 2012, in prep.)
Outline

- Background: Role of Ex-Reha in Cancer
- Indication for Exercise in SCT
- State of the Art: Exercise in SCT Patients
- Result from new Studies
- Conclusion and Future Directions

Effects of a partly self-administered exercise program prior to, during and after allogeneic stem cell transplantation – a randomized controlled trial

Aim:
To evaluate the feasibility and efficacy of a partly self-administrated physical exercise intervention before, during and after allogeneic hematopoietic stem cell transplantation (HSCT)

Primary Outcome:
- Cancer-Related Fatigue (CRF)

Secondary Outcomes:
- Physical performance/fitness
- Quality of Life, Distress, Depression, Anxiety

Published in Blood 2011, 177: 2604-2613
Study Design

Decision for PBSC / BMT (Companion check)

Exercise 5x/week (resistance and endurance training (2/3x))

Admission to hospital

Exercise 5x/week (starting with endurance training (5x) add resistance training (2x))

Discharge from hospital

Exercise 5x/week (resistance and endurance training (2/3x))

Aftercare check (6-8 weeks)

Catamnesis (6 months)

Geneva, EBMT 2012
Wiskemann – HSCT and Exercise

Patient-Flow

Eligible patients approached (n=141)

Agreed to participate and randomization (allocation) performed (n=112)

- Baseline -

Exercise group

Control group

Excluded from analyses (n=0)

Excluded from analyses (n=0)

Missing G Data 2 at c, estimated by LOGCF

Missing G Data 3 at t, estimated by LOGCF

Figure 2. CONSORT diagram.
Days in Treatment & Ex-Adherence

Table 2. Days in treatment periods per group

<table>
<thead>
<tr>
<th></th>
<th>Outpatient before HSCT</th>
<th>Duration of hospitalization</th>
<th>Outpatient after HSCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>15 (5-90)</td>
<td>43 (22-120)</td>
<td>52 (40-83)</td>
</tr>
<tr>
<td>Exercise</td>
<td>21 (5-112)</td>
<td>45 (24-92)</td>
<td>49 (39-63)</td>
</tr>
<tr>
<td>*P</td>
<td>.12</td>
<td>.64</td>
<td>.08</td>
</tr>
</tbody>
</table>

Table 3. Adherence to exercise intervention

<table>
<thead>
<tr>
<th>Study period</th>
<th>Before, %</th>
<th>During, %</th>
<th>After, %</th>
<th>Mean, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adherence to protocol</td>
<td>87.5</td>
<td>83.0</td>
<td>91.3</td>
<td>87.3</td>
</tr>
<tr>
<td>Exercise recommendation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing documentation</td>
<td>23.0</td>
<td>23.9</td>
<td>15.7</td>
<td>21.2</td>
</tr>
</tbody>
</table>

Fatigue

(POMS – Fatigue/müde)

ANOVA (rep. measures):
Interaction (Gr*Time):
F= 3.485 [p= .024]

Social Contact Group:
28% Increase ↑
Exercise Group:
15 % Reduction ↓
⇒ Intervention period
Physical Fitness
(Endurance Performance: 6 Minute-Walk-Test)

ANOVA (rep. measures):
Interaction (Gr*Time):
F = 3.846 [p = .018]

No significant differences in heart rate and Borg-Scale values at the end of 6MWT.

Physical Fitness
(Isometric Strength Performance: Handheld Dynamometry)

Note:
Greatest intervention effect for lower extremities
Main Results

• significantly improvement in fatigue scores
 (15% improvement in Exercise vs. 28% deterioration in Control group; p-values <0.01-0.03)

• significantly improvement in physical fitness and functioning scores
 (endurance and strenght performance; p-values 0.02-0.03)

• significantly reduced distress in EX vs. Control
 (p-value 0.03)

→ New: Achieved interventions effects seems to be sustainable

Conclusion

→ partly-supervised exercise intervention is beneficial
→ because of low personnel requirements it might be valuable to integrate
 such a program into standard medical care

PETRA-Study

Physical Exercise Therapy and Relaxation in Allogeneic stem cell transplantation

A Randomized, Controlled Intervention Study
Cooperation Partners: University Clinic Heidelberg, Department: Stem Cell Transplantation
Central Institute of Mental Health, Mannheim
Funding: German José Carreras Leukemia-Foundation e.V.

Clinical Trails.gov Identifier: NCT01374399
Aims PETRA-Study

- Feasibility of an one year exercise intervention in allo-HSCT
- 1-/2-years overall-survival
- Effects on clinical relevant symptoms (fatigue, QoL, GvHD incidence, infections, physical functioning)
- Hematological and immunological reconstruction

Design PETRA-Study

Inpatient setting
- Baseline diagnostic / admission
- Day 0
- Discharge
- Exercise (endurance and resistance training) 5x/week

Outpatient setting I
- Day 100
- Exercise (endurance and resistance training) 5x/week
- Day 180
- Relaxation (PM) 5x/week
- Day 270
- Exercise (endurance and resistance training) 5x/week
- Day 365
- Health care center / home-based

Outpatient setting II
- Day 0
- Exercise (endurance and resistance training) 5x/week
- T2
- Home-based
- T3
- Health care center / home-based
- T4
- T5
- T6
Outline

→ Background: Stem Cell Transplantation (SCT)
→ Indication for Exercise in SCT
→ State of the Art: Exercise in SCT Patients
→ Result from new Studies
→ Conclusion and Future Directions

Conclusion & Take Home Message

➢ Physical exercise is beneficial for patients undergoing HSCT
➢ PE has multidimensional effects
 (→ biopsychosocial perspective)
➢ Patients in „bad conditions“ benefits most

→ Larger RCTs with long-term interventions (to induce a stable physical active lifestyle) and follow-up periods are needed.
Thank you very much for your attention!

Acknowledgement

Transplant Center Heidelberg
Peter Dreger
Andrea Bondong
Thomas Luft
Dorothea Graf
Ute Hegenbart
Marie-Luise Knee
Outpatient-Team

NCT Heidelberg
Nafi Ulrich
Karen Steindorf
Dirk Jäger

ZI Mannheim
Martin Bohus
Nikolaus Kleindienst
Martin Jungkunz

ISS Heidelberg
Gerhard Huber
Klaus Roth

Alois Burkhard
Rea Nies
Theresa O’Neill
Rebekka Maier
Brunhilde Schumann-Schmid