Iron overload in MDS

Theo de Witte
Radboud University Medical Centre Nijmegen, Netherlands

MDS Subcommittee of the Chronic Leukemia Working Party of the EBMT

Anja van Biezen, Marijke Scholten, Ronald Brand, Laura Spinnewijn, Kathrin-Haifa Al-Ali, N. Kröger, Francesco Onida, Argyris Symeonidis, Jürgen Finke, Uwe Platzbecker, Eeva Juvonen, Dietrich Beelen, R. Schwerdtfeger, Yngvar Floisand, Rodrigo Martino, A. Atienza, K. Steinerova, Nicolaus Kröger (chairman)
MDS transplantation activity in Europe reported to EBMT

The number of HSCT in MDS patients is increasing, especially RIC HSCT

EBMT = European Group for Blood and Marrow Transplantation.
Changes in MDS transplantation activity in Europe reported to EBMT

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of allografts</td>
<td>786</td>
<td>1,028</td>
<td>1,259</td>
<td>1,560</td>
<td>1,117</td>
</tr>
<tr>
<td>RIC</td>
<td>259</td>
<td>483</td>
<td>589</td>
<td>787</td>
<td>626</td>
</tr>
<tr>
<td>Related donors</td>
<td>460</td>
<td>558</td>
<td>591</td>
<td>647</td>
<td>421</td>
</tr>
<tr>
<td>Unrelated donors</td>
<td>318</td>
<td>459</td>
<td>653</td>
<td>902</td>
<td>683</td>
</tr>
<tr>
<td>Age ≥ 50 years</td>
<td>383</td>
<td>589</td>
<td>753</td>
<td>928</td>
<td>733</td>
</tr>
</tbody>
</table>

The frequency of HSCT in MDS patients is increasing with time, especially in patients ≥ 50 years of age

EBMT CLWP registry. Personal communication.
Eligibility of MDS patients for HSCT

- **IPSS Int-2- and High-risk MDS**
 - allo-SCT is first choice, unless clear comorbidity or refractory disease

- **IPSS Int-1 MDS**
 - consider allo-HSCT seriously, especially in case of young age, adverse cytogenetic characteristics, life-threatening cytopenias, or signs of progression (blasts and/or marrow failure)

- **IPSS Low-risk MDS**
 - consider allo-HSCT in case of prognostic adverse factors, including high transfusion need not responding to EPO and/or lenalidomide

Transfusion dependency/anemia and co-morbidity are two new prognostic factors to be considered during the selection process.

EPO = erythropoietin.

Adapted from: Ljungman P, et al. Bone Marrow Transplantation 2010; 219-34.
Survival by IPSS risk in patients who did or did not undergo transplantation

IPSS = International Prognostic Scoring System.
Correlation between age and HCT-CI

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Patients (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 40</td>
<td>100</td>
</tr>
<tr>
<td>40–49</td>
<td>80</td>
</tr>
<tr>
<td>50–59</td>
<td>60</td>
</tr>
<tr>
<td>> 59</td>
<td>40</td>
</tr>
</tbody>
</table>

Older candidates for HSCT are more likely to have comorbidities

Comorbidity and disease status-based risk stratification

Overall survival decreases with increasing HCT-CI score and disease risk of MDS patients

Pathophysiology of iron overload in MDS

Ineffective erythropoiesis

Hepcidin

Duodenal absorption

↑ Ferroportin

↑ Ferroportin-mediated export

RBC transfusions

Macrophage iron

Increased transferrin saturation

Elevated NTBI and LPI

Infection

↑ ↑ ↑ ↑ ↑

SCT mortality

Leukaemic transformation

Myocardial iron

Myelosuppressive therapy

Decreased erythropoiesis

Iron utilization

LPI = labile plasma iron; NTBI = non-transferrin-bound iron;
SCT = stem cell transplantation.

NTBI during allogeneic HSCT

C = onset of conditioning regimen.

NTBI during allogeneic HSCT (cont.)

- NTBI peaks around day 4 of the conditioning regimen and is detectable for around 2 weeks
- NTBI increases generation of hydroxyl radicals by
- Hydroxyl radicals can cause tissue damage by oxidative damage to proteins and lipid peroxidation

Impact of serum ferritin level prior to HSCT on OS and NRM post-HSCT (n = 129)

The impact of serum ferritin remained unchanged when the model was adjusted for albumin level.

Overall survival by serum ferritin level prior to HSCT

Non-relapse mortality by serum ferritin level prior to HSCT

Impact of pre-SCT iron overload on risk of blood stream infections

- Result of compromised immunity due to conditioning regimens, cytopenias, and the use of immunosuppressive agents\(^1\)

- Pre-SCT serum ferritin $\geq 1,000$ µg/L is associated with a significant increase in the incidence of blood stream infections\(^1,2\)
 - iron overload in HSCT is associated with increased the risk for aspergillosis and *Staphylococcus epidermidis*\(^1,3–7\)

Impact of pre-SCT iron overload on risk of hepatic VOD

- VOD is associated with high morbidity and mortality1–6
- VOD is a result of endothelial and hepatocyte damage1
 - due to conditioning regimen
 - due to chemotherapy and elevated LPI after conditioning
- Pre-HSCT serum ferritin > 1,000 µg/L is a risk factor for the subsequent development of VOD7–9

The European Group for Blood and Marrow Transplantation

The effect of transfusions and iron toxicity on non-relapse mortality in patients with untreated adult MDS treated with myeloablative alloSCT

a retrospective study of the MDS subcommittee of the Chronic Leukaemia Working Party of the EBMT

Cox model for overall survival in untreated adult MDS patients

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>p value</th>
<th>Hazard ratio</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDS at tx*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RA/RARS</td>
<td>69</td>
<td>0.018</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>RAEB</td>
<td>107</td>
<td>0.011</td>
<td>1.8</td>
<td>1.1–2.9</td>
</tr>
<tr>
<td>RAEB-t/sAML</td>
<td>37</td>
<td>0.012</td>
<td>2.1</td>
<td>1.2–3.6</td>
</tr>
<tr>
<td>RBC pretx†</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–20</td>
<td>86</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>> 20</td>
<td>44</td>
<td>0.029</td>
<td>1.7</td>
<td>1.1–2.7</td>
</tr>
<tr>
<td>Serum ferritin levels†</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 1,500 ng/mL</td>
<td>51</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>≥ 1,500 ng/mL</td>
<td>19</td>
<td>0.113</td>
<td>1.8</td>
<td>0.9–3.9</td>
</tr>
<tr>
<td>Composite iron score†</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low/intermediate/high</td>
<td>53</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Very high</td>
<td>34</td>
<td>0.05</td>
<td>1.8</td>
<td>1.0–3.4</td>
</tr>
</tbody>
</table>

*Adjusted for donor, t-cell depletion, interval diagnosis-tx, age.
†Adjusted for donor, t-cell depletion, interval diagnosis-tx, age, MDS classification at tx.
A Non-Interventional Prospective Study to Evaluate the effect of transfusions and Iron toxicity in patients with myelodysplastic syndrome (MDS) treated with allogeneic stem cell transplantation (SCT)

Inclusion of patients Jan-2010 to Dec-2011
Options to improve outcome of HSCT in MDS

- Induction chemotherapy or hypomethylation therapy
 - possible delay of induction and use of iron chelation therapy
- Conditioning
 - myeloablative vs reduced intensity conditioning (RIC)
 - management of iron overload
- Post-transplantation strategies
 - iron-reductive treatment (iron chelation therapy or phlebotomies)
 - donor lymphocyte infusion
 - maintenance therapy
 - vaccination and immunotherapy
Iron chelation prior to HSCT improves survival

ICT = iron chelation therapy;
SF > 1,000 = patients with serum ferritin ≥ 1,000 µg/L at the time of HSCT;
SF < 1,000 = patients with serum ferritin < 1,000 µg/L at the time of HSCT, without ICT;
IC = patients with serum ferritin decreased to < 1,000 µg/L with ICT before HSCT.

Phlebotomy post-HSCT

- Patients surviving ≥ 4 years from SCT
 - to limit to patients with transfusional iron overload, excluding
 - hepatitis B/C, alcohol, hepatotoxic or immunosuppressive treatment, GVH, VOD/SOS, bleeding, inflammatory/neoplastic condition
 - 38 of 65 patients (58%) had serum ferritin above the normal range
 - MRI was abnormal in 31 of 32 patients
 - 29 of 38 patients accepted phlebotomy
 - AST/ALT normalized in 10 of 16 patients
 - serum ferritin normalized in 24 of 28 patients
 - conclusion: transfusional iron overload remains long-term following SCT and at least moderately impacts organ function

AST/ALT = aspartate transaminase/alanine transaminase; GVH = graft-versus-host; VOD/SOS = veno-occlusive disease/sinusoidal syndrome.
Planned prospective study to compare iron chelation with phlebotomy after allogeneic SCT for MDS (cont.)

- Conditioning and SCT
- Day -14
- Day 0
- Day 30
- Month 6
- Month 18
- Screen inclusion
- Randomization
- No ICT/No phlebotomy (Control)
- Phlebotomy
- Deferasirox
- Assessments for Core study end-points
- Assessments for Extension study end-points
- No ICT / No Phlebotomy (Control)
Iron chelation in MDS

The role of iron chelators to prevent the adverse effects of toxic iron should be addressed in clinical studies.

Present guidelines: indications iron chelation in MDS:

- Serum ferritin $>1,000 \, \mu g/l$
- Transfusion dependency: $>4\, \text{units/2 months}$
- Prognosis $>2\, \text{years}$ (lower risk MDS only?)
- Candidates allogeneic SCT
Case presentation

● Patient characteristics
 – 58-year-old female patient
 – 73 kg, 1.57 m

● Anaemia since April 2006
 – transfusion dependent: 2 units every 3 weeks

● Bone marrow in May 2006
 – Ring-sideroblastic anaemia with thrombocytosis (600 x 10^9/L): RARS-T
 – Normal cytogenetics; JAK2 mutation negative
Case presentation (cont.)

- October 2006: referral to RUNMC
 - serum ferritin 673 µg/L; transferrine saturation 81%
 - EPO level 482 mU/mL
- May 2007: 20 units of blood
 - serum ferritin 1,560 µg/L
- HLA-identical donor available (brother)

EPO = erythropoietin; HLA = human leucocyte antigen; RUNMC = Radboud University Medical Centre Nijmegen.
Case presentation (cont.)

Serum ferritin (µg/L)

<table>
<thead>
<tr>
<th>Date</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct-06</td>
<td>0</td>
</tr>
<tr>
<td>Jan-07</td>
<td>200</td>
</tr>
<tr>
<td>Apr-07</td>
<td>400</td>
</tr>
<tr>
<td>Jul-07</td>
<td>600</td>
</tr>
<tr>
<td>Oct-07</td>
<td>800</td>
</tr>
<tr>
<td>Jan-08</td>
<td>1,000</td>
</tr>
<tr>
<td>Apr-08</td>
<td>1,200</td>
</tr>
<tr>
<td>Jul-08</td>
<td>1,400</td>
</tr>
<tr>
<td>Oct-08</td>
<td>1,600</td>
</tr>
<tr>
<td>Nov-08</td>
<td>1,800</td>
</tr>
<tr>
<td>Dec-08</td>
<td>2,000</td>
</tr>
</tbody>
</table>

Trisomy 8 in 60% of the metaphases; leucocytosis

Deferasirox (mg/µg/day)

<table>
<thead>
<tr>
<th>Date</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec-08</td>
<td>5 → 20</td>
</tr>
<tr>
<td>Jan-08</td>
<td>15</td>
</tr>
<tr>
<td>Apr-08</td>
<td>25</td>
</tr>
<tr>
<td>Jul-08</td>
<td>10</td>
</tr>
<tr>
<td>Oct-08</td>
<td>0</td>
</tr>
</tbody>
</table>

Hydroxyurea discontinued due to severe cryptogenic pneumonitis

De Novo translocation t(10;16)(q23;p13)

Start hydroxyurea due to progression

Started prednisone (1 mg/kg/day) for treatment of the pneumonitis

Allogeneic SCT (standard intensive conditioning with ex vivo T-cell depletion)

Transfusion requirement

<table>
<thead>
<tr>
<th>Date</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct-06</td>
<td>2 pRBC per 3 weeks</td>
</tr>
<tr>
<td>Jan-07</td>
<td>2 pRBC per 2 weeks</td>
</tr>
</tbody>
</table>
Case presentation (cont.)

- After allogeneic SCT
 - 14 units of blood
 - 9 thrombocyte transfusions
 - last transfusion: 4 weeks after SCT
- February 2009
 - complete donor chimera
- April 2009
 - stopped ciclosporin immunosuppression
 - patient developed chronic renal function impairment (30 mL/min) owing to the renal toxicity of the ciclosporin treatment
 - serum ferritin 1,351 µg/L
Case presentation (cont.)

- June 2009: prophylactic donor lymphocyte infusion: non-severe chronic skin GVHD (no systemic treatment required)
- August 2009: right hip replacement
- December 2009: serum ferritin 846 µg/L
- March 2011: serum ferritin 613 µg/L; Hb 8.3 mmol/L; WBC 6.2 x 10^9/L; thrombocytes 150 x 10^9/L

WBC = white blood count.
Case summary

- 60-year-old female patient with a 3-year history of MDS, type RCMD
- After 2 years, progression with high transfusion need (10 units per month), cytogenetic abnormalities, leucocytosis, persisting thrombocytosis
- Proactive iron chelation allowed an uneventful allogeneic SCT (with standard conditioning) apart from coxarthrosis owing to corticosteroid therapy prior to SCT
- Following the allogeneic SCT, the patient remained transfusion independent for more than two years with no significant complication except a severe VZV-infection

RCMD = refractory cytopenia with multilineage dysplasia.