FULMINANT EBV –ASSOCIATED HAEMOPHAGOCYTIC SYNDROME FOLLOWING UNRELATED STEM CELL TRANSPLANTATION. REPORT OF A CASE FROM JULES BORDET INSTITUTE.

Clinical features

- 66 years old man, chemical engineer.
- 2011 AML secondary to MDS, normal Karyotype, Negative WT1.
- Treatment:
 - cytarabine + idarubicin → partial remission
 - HD Cytarabine + Amsacrine → CR
 - Mitoxantrone + cytarabine
- 02/2013: relapse with normal karyotype, negative WT1.
- Treatment:
 - Reinduction → CR
 - Consolidation ID aracytine → Transplant was delayed: Anal abcess
- Donor: Male 38yo, MUD 10/10, CMV +/-, Rhesus incompatibility.
Predictive scores

- HCT-CI at 2, EBMT score at 5 → NRM at 28%, OS at 53%
Early 100 days

- Conditioning regimen: RIC
 - Busulfan, ATG, Fludarabine
 - GVHD prevention: Tacrolimus and sirolimus
- HSCT: 5.95×10^6 CD34+/Kg, 1.1×10^8 CD3+/Kg, 3.87×10^8 WBC/Kg

- Aplasia: Febrile neutropenia + sinusitis \Rightarrow antibiotics
- Engraftment: Day +24
Early 100 days

• Day+33: Fever at 40, chills, tachycardia, dyspnea, moderate kidney failure, hepato-splenomegaly

• Biology:
 o Pancytopenia: secondary engraftment failure,
 o Hyperferritinemia: 29480ug/l
 o Triglycerids: 639mg/dl
 o LDH: 2400IU/l
 o Liver dysfunction GOT/GPT=657/200
 o Kidney failure.
 o Hemophagocytosis on bone marrow

• Microbiology:
 o EBV PCR at 4463476 copies

• Medullar Immunophenotyping:
 o 65% of population CD3+ CD8+ express TCR A/B+ CD7+ CD1a- CD28+ tdt –
 o Balance CD4/CD8= 0.1

• **FULMINANT EBV –ASSOCIATED HAEMOPHAGOCYTIC SYNDROME**
Evolution

- Transfer to ICU for MOF
- Treatment:
 - Rituximab 375mg/m2 and corticosteroids. Etoposide was not given. Sirolimus and tacrolimus were stopped ➔ decreasing of LDH, Tg, ferritinemia.
- Evolution: Increasing liver dysfunction
 - Liver biopsy: GVHD steroids refractory ➔ ATG
- Death ➔ sepsis and MOF
Diagnosis criteria of HPS

Major criteria

1. Engraftment failure, delayed engraftment, or secondary engraftment failure after HSCT
2. Histopathological evidence of haemophagocytosis

Minor criteria

1. High grade fever >38.5°C
2. Hepato-splenomegaly
3. Elevated ferritin >500ng/ml
4. Elevated serum lactate dehydrogenase (LDH)

Cytopenia has been excluded in post HSCT

Diagnosis = 2 major criteria or 1 major criterion + 4 minor

Physiopathology

Int J Hematol 2004; 80: 467–469

- Defective killing mechanism
- Infection
- Activated tissue macrophage (histiocyte)
- Cytokines

Karras et al / Actualités néphrologiques 2005

Bone Marrow Transplantation (2007) 40, 701–703

- Residual host-derived macrophages were involved in the development of allo-HSCT-associated HPS. The early onset-allo-HSCT-associated HPS as a form of host-versus-graft response (in JMML patients)

Transplantation 2002; 73: 104-111

- Macrophage population remains chimeric until 3 months after HSCT (even after MAC)
Incidence

+ 25 patients in 17 case reports after autologous \((n = 5)\) and allogeneic \((n = 21)\) HSCT. Among 21 patients who received allogeneic HSCT, RIC \((n=9)\), CBT\((n=5)\). HPS has been considered as a rare event after HSCT.

+ HPS is known to occur early (during weeks 2–6) after allo-HSCT

+ Abdelkafi et al (Int J Hematology 2009) published a prospective observational study on 171 patients who underwent HSCT (68 allogenic and 103 autologus). He observed 6 cases of HPS. Incidence was 8,8%. 3 cases were caused by viral infections.

+Kobayashi et al (Bone Marrow Transplant 2014) studied 554 patients with HPS after HCT . The cumulative incidence was 4,3%.

Fewer infused CD34+ cells is a significant risk factor for the development of HPS (p=0.01). The incidence of HPS was higher in the ‘reduced-intensity’ group, although it did not reach statistical significance (P = 0.17).

The Use of etoposide in the conditioning regimen was the only factor that reduced HPS after SCT (p=0.027)

+ Fewer infused CD34+ cells is a significant risk factor for the development of HPS (p=0.01). +The incidence of HPS was higher in the ‘reduced-intensity’ group, although it did not reach statistical significance (P = 0.17).

+ The Use of etoposide in the conditioning regimen was the only factor that reduced HPS after SCT (p=0.027)
Prognosis

• The prognosis is poor and the mortality is high.
• Patients with liver dysfunction had a poor response to treatment.
• Takagi et al found 85% of mortality in patients with HPS after allogenic HSCT. The cause of mortality: sepsis (41%), relapse (17%), GVHD (15%), Hemorrhage (12%)
• OS at 4 years was significantly poorer in patients with HPS.

15.0% vs. 35.4%;
P = 0.0002

Bone Marrow Transplant (2014) 49 (2), 254-7
British Journal of Haematology (2009), 147, 543–53
Treatment

- Treatment of the cause
- Etoposide
- Corticosteroids
 - Cyclosporin A inhibits T lymphocytes
- IGIV
- ATG
- Bone marrow or stem cell transplantation
- Anti TNF alpha Ab

Karras et al / Actualités néphrologiques 2005
Chinese Medical Journal 2013;126(18):3587-3589
Conclusions

• HPS following HSCT is a rare fatal event.
• Mostly caused by viral infection.
• Predictive score for HPS before HSCT
• The origin of macrophages is still controversial
• Risk factors: amount of CD34+, RIC, Etoposide.
• Bad prognosis, high mortality.
• Treatment of the cause + etoposide (controversial) + steroids

Thank you for your attention