The concept of resetting the immune balance

Paolo A. Muraro, MD PhD
Head, Clinical Neuroimmunology Group
Division of Brain Sciences, Department of Medicine
Imperial College London

EBMT Joint Educational Meeting, Paris 16 November 2012

Autologous HSCT suppresses brain inflammation in MS (Mancardi et al Neurology, 2001; Saccardi et al Blood 2005)

Mean number /month
Gd+areas: 13.5

Mean number /month
Gd+areas: zero

Time (months)

Courtesy of Prof. Mancardi
What is the therapeutic mechanism?

Rationale of HSCT as treatment for autoimmune disorders

- Abrogation of pathogenic T cell response (via immunoablation) regardless of specificity
- Assumption that environmental triggering factors are no longer present or active
- Reconstitution of a tolerant immune system
Resetting the immunological clock?

Environmental factors (viruses, bacteria)

Population at risk

Genetically susceptible

Clinically affected

Persistent tolerance

Latency

HSCT

Autoimmune disease

Abrahamsson and Muraro, Autoimmunity 2008

HSCT: Immune...

Resetting

Rebooting

Rejuvenation

Rejuvenation

Recapitulation

Renewal

Recapitulation

Reformatting

Re-education

Reformatting

Reconditioning

What do we mean by that?
How do we define immune resetting?

Replacement with new immune repertoire?

Thymic output generates a new and diverse TCR repertoire after autologous stem cell transplantation in multiple sclerosis patients

Paolo A Muraro,1 Daniel C Domnik,1 Amy Packer,1 Katherine Chang,1 Francisco J. Gennaro,1 Ricardo Cavani-Inganni,1 Catherine Campbell,1 Saritaz Memen,1 James W. Nagle,1 Frances T. Hakin,2 Ronald E. Gress,3 Henry E. McFarland,1 Richard K. Burt,1 and Roland Martin1

1. TREC assay

2. Phenotype-based Enumeration of Recent Thymic Emigrants

Thymic rebound

- Thymic rebound: the volumetric enlargement and functional reactivation of the thymus following lymphoid depletion
- Rapid and prominent in children
- Delayed and reduced in older adults
- Naïve T cell recovery in the peripheral circulation after HSCT is correlated with thymic rebound

Figure 1 Recovery of CD4+ T-cell subsets over time in SLE patients treated by immunoablation and ASCT versus levels in age-matched healthy controls

Two pathways mediate immune reconstitution after lymphodepletion

Hakim and Gress, Eur J Immunol 2005

Immune reconstitution after AHSCT

Muraro and Douek, 2006
The spectrum of thymus-independent T cell reconstitution

"True" homeostatic proliferation

Main T cell subset

Initial activation status

Oligoclonal T cell expansion

CD4+

CD8+

Naive

Memory

Diversity of TCR repertoire

Avidity and affinity of Ag-MHC stimulus

Peptide/MHC stimulus

Commensal microflora

Foreign (viral) pathogens

Self Ag

IL-7 (or IL-4 or IL-15)

IL-15, IL-7, or IL-2

Slow

Fast

Proliferation rate

Cytokine requirement

Muraro and Douek, 2006
Diversification and renewal of T cell repertoire following auto-HSCT in MS patients

CDR3 spectratyping

Pre-transplant

6 months

1 year

2 years

Nucleotide sequencing

- ~90% new T cell clones

5. T CELL REPERTOIRE and TREC values AFTER ABMT IN SSC

<table>
<thead>
<tr>
<th>A (CR, PR) vs B (NR, relapse) (n=14 CY alone)</th>
<th>Farge Arthr Rheum 2005; 52: 1555</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal values</td>
<td>At inclusion</td>
</tr>
<tr>
<td>Polyclonal BV families, %</td>
<td>Group A</td>
</tr>
<tr>
<td>Polyclonal</td>
<td>70.3 ± 29.0</td>
</tr>
<tr>
<td>SKEWED BV families, %</td>
<td>22.8 ± 30.2</td>
</tr>
<tr>
<td>Negative BV families, %</td>
<td>6.9 ± 7.4</td>
</tr>
<tr>
<td>TREC/μg DNA</td>
<td>494 ± 776.6</td>
</tr>
<tr>
<td>TREC/CRP: r = - 0.41, p < 0.001, TREC / CD19+: r = 0.35, p < 0.001 (RA , SEP)</td>
<td></td>
</tr>
</tbody>
</table>

Sustained altered T cell homeostasis and abnormal Repertoire (Crit Rev Immunol 1995)

Persistence of underlying disease mechanism after HSCT?maintenance immunosuppression

EBMT Autoimmune Diseases and Immunobiology Working Parties | 16-17
Nov 2012 | Paris, France
How do we define immune resetting?

Replacement with new immune repertoire? ✔

Eradication of existing immune system?

Early recovery of CD4 T cell receptor diversity after “lymphoablative” conditioning and autologous CD34 cell transplantation

Jan Storek1,2, Zhao Zhao3, Ying Liu2, Richard Nash1, Peter McSweeney1,3, and David G. Maloney1

<table>
<thead>
<tr>
<th>HLA-Tetramer</th>
<th>TCR Transplant</th>
<th>HLA-Tetramer</th>
<th>TCR Original</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HLA-tetramer and TCR analysis: persistence of pre-existing Ag-specific clones either carried over from autologous graft or surviving conditioning chemo

Storek et al BBMT 2008
Treatment protocol: a high-intensity myeloablative conditioning regimen

Peripheral CD34 selected (Isolex, Baxter) Autologous graft

- **Mobilization**
 - Peripheral CD34 selected (Isolex, Baxter)

- **Conditioning**
 - CY 2.0 g/m²
 - G-CSF 5 µg/kg per day
 - CY 60 mg/kg/day for 6 days
 - TBI 150 cGy, twice daily, for 4 consecutive days yielding a total dosage of 1200 cGy

Post Transplant

Dubinsky et al. BMT 2009

T-cell clones persisting in the circulation after autologous hematopoietic SCT are undetectable in the peripheral CD34+ selected graft

AN Dubinsky1,2, R K Burt3, R Martin1,4 and PA Muraro1,2

EBMT Autoimmune Diseases and Immunobiology Working Parties | 16-17
Nov 2012 | Paris, France
How do we define immune resetting?

Replacement with new immune repertoire? ✓

Eradication of existing immune system? partial ✓

Re-instatement of immune regulation?
Figure 7. Induction of CD4+CD25bright regulatory T cells in rats undergoing BMT

Recovery of CD4+CD25bright T-cell frequency after ASCT

Figure 2 Phenotypic analysis of FoxP3+ Treg levels in 5 patients after ASCT compared with those in healthy controls and conventionally treated SLE patients

Zhang et al. JI 2009 (Nov. 15)

Regulatory T Cell (Treg) Subsets Return in Patients with Refractory Lupus following Stem Cell Transplantation, and TGF-β-Producing CD8+ Treg Cells Are Associated with Immunological Remission of Lupus

Li Zhang, Anne M. Bertucci, Rosalind Ramsey-Goldman, Richard K. Bart, and Nymal K. Dutta

Zhang et al. JI 2009 (Nov. 15)
Paolo Muraro | The concept of resetting the immune balance

How do we define immune resetting?

- **Replacement** with new immune repertoire?
- **Eradication** of existing immune system? (partial)
- **Re-instatement** of immune regulation?

Shifting the balance

- **Auto-reactive memory T** and **B cells**
- **IL-1**, **TNF**
- **IFN-g**, **IL-17**
- **Impaired immune regulation**
- **AHSCT**
- **Naïve cells**
- **Regulatory cells**
- **TGF-b**
- **IL-10**
- **Apoptosis**
Conclusions

Autologous hematopoietic stem cell transplantation
has the potential to stop MS inflammation through
reset of immune system

We have identified 3 main mechanisms of immune resetting
- Influx of naïve cells from thymus
- “Debulking” of mature memory lymphocyte repertoire
- Boost of number of regulatory cells

Perspective

- The 3 identified mechanisms of immune resetting may be complementary or synergistic
- Their relative contribution may depend on transplantation regime
- Their importance in determining the clinical outcome remains to be established