Why empirical antifungal strategy is outdated for fungal infections?

Catherine Cordonnier, MD
Hematology Department
Henri Mondor University Hospital
Créteil, France
How many patients do you treat according to the strategy you choose in high-risk neutropenic patients?

- Prophylaxis: 100%
- Empirical: 50-70%
- Pre-emptive GM: 15-40%
- Ttt: 5-10%

Estimated cost of treating a proven or probable invasive aspergillosis:
- 15,280 € (Slobbe 2008)
- to 442,233 $ (Tong 2009)
The main different antifungal approaches before overt fungal disease

- **Primary antifungal prophylaxis:** well defined, targeted to high-risk patients

- **Empirical antifungal therapy:** clinically defined, but poorly evidence-based

- **Pre-emptive antifungal therapy:** clinically defined and largely investigated
Historical Basis for Empirical Antifungal Treatment in Neutropenic Patients: the “fever-driven” approach

❖ Pizzo et al. 1982
 • 50 pts, febrile at day 7 of antibacterials
 • Trend for more IFI in the pts not receiving Ampho B

❖ EORTC 1989
 • 132 pts, febrile at day 4 of antibacterials. Ampho B at random
 • Less fungal deaths (6 vs 1; p = .056) with Ampho B

 • No impact on overall survival
“PRO” the Empirical Antifungal Approach

- Standard of care for persistent or recurrent fever
- Endorsed by consensus guidelines
- The early diagnosis of IFI is difficult
- Delayed treatment of IFI increases mortality
- Fever is easy to assess
- Sophisticated and expensive diagnostic exams can be spared or delayed
- The strategy is easy to apply
Indication for Empirical Antifungal Therapy in Persistently Febrile Neutropenic Patients

B II

« Generally recommended
Moderate evidence »
Why the empirical antifungal therapy is outdated?

- Many causes of non-infectious fever
- Probable overtreatment of many patients
- Excessive cost
- Unnecessary toxicity
- More efficient prophylaxis in well-defined populations
- Better imaging than 30 years ago
- Availability of new biomarkers (GM, PCR, β-D glucan, mannanes etc..)
- An approach of the previous century
“Taken as a measure against something possible, anticipated, or feared”

“Targeted”, “diagnosis-driven” ≠ fever-driven
OBJECTIVES
of a PRE-EMPTIVE strategy

Target only the high-risk patients

And at a very early phase of developing IFI

Reduce the administration of antifungals => reduce the costs

- less patients treated with ATF
- for shorter durations
<table>
<thead>
<tr>
<th>Criteria</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical:</td>
<td>Pneumonia</td>
</tr>
<tr>
<td>Imaging:</td>
<td>Typical or not</td>
</tr>
<tr>
<td>Biomarkers:</td>
<td>Galactomannan antigenemia</td>
</tr>
<tr>
<td></td>
<td>β-D glucan</td>
</tr>
<tr>
<td></td>
<td>PCR</td>
</tr>
<tr>
<td></td>
<td>Mannan, antimannan</td>
</tr>
</tbody>
</table>

Combinations of several criteria
« PRE-EMPTIVE » for IFI
Should reproduce the successful CMV story?

<table>
<thead>
<tr>
<th>Pre-emptive in CMV Infection in HCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMV viremia is predictive for CMV disease</td>
</tr>
<tr>
<td>(Meyers 1990, Ljungman 1993)</td>
</tr>
<tr>
<td>Pre-emptive antiviral therapy based on detection of CMV Ag or nucleic acid is effective for prevention of CMV disease in allogeneic SCT patients</td>
</tr>
<tr>
<td>Pre-emptive treatment and prophylaxis are roughly equivalent</td>
</tr>
<tr>
<td>(Boeckh M et al. 1996)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pre-emptive in IFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM Ag in blood as a predictor of IFI</td>
</tr>
<tr>
<td>Should prevent IF disease</td>
</tr>
<tr>
<td>Could replace prophylaxis for lower cost than empirical therapy</td>
</tr>
</tbody>
</table>
Galactomannan and CT-Based Preemptive Antifungal Therapy

Maertens et al. Clin Infect Dis 2005

High-risk hematology patients

Daily GM monitoring and clinical evaluation

OD index
2x ≥ 0.5

5 Days of unexplained Neutropenic fever Refractory to Antibiotics or relapsing

New infiltrate on chest X-Ray or signs/symptoms Of invasive mycosis

Positive culture or Microscopy (molds)

Thoracic CT scan (± CT sinus)

Characteristics of invasive Mycosis: ‘halo-sign’

Atypical lesion

Normal

Thoracic CT & BAL

Bronchoscopy with BAL

Broad-spectrum antifungal therapy

Continued monitoring No antifungal therapy
Galactomannan and CT-Based Preemptive Antifungal Therapy

Maertens et al. CID 2005

136 episodes

117 febrile episodes

41 episodes = 30% with criteria for Empirical therapy

9 episodes treated in the Pre-emptive approach + 10 with GM+ (febrile or not)

TOTAL: 16% of the whole episodes received antifungals

Incidence of probable and proven IFI / episode: 15%

/ patient: 24%
Liposomal Amphotericin B Tx. Following Allogeneic SCT PCR-based vs. Empiric Antifungal Therapy

Allogeneic myeloablative SCT recipients followed from D0 to D100

Conditioning Therapy

PCR-based

PCR pos. ± clinical signs

PCR neg. + febrile neutropenia ≥ 120h

Randomization

Empirical Therapy

Febrile neutropenia ≥ 120h

Liposomal Amphotericin B 3 mg/kg/d for 3 days

Clinically stable

Liposomal Amphotericin B 1 mg/kg/d

Clinically deteriorated

Liposomal Amphotericin B 3 mg/kg/d

Endpoints: Incidence of IFI, IFI-related Mortality, Overall Survival

Hebart H et al. BMT 2009
PCR-based Pre-emptive Approach in Allogeneic SCT

Hebart H et al. BMT 2009

403 Allogeneic SCT pts until D100 At random

PCR screening
n=196

Treated: 109 (56%)*

Proven IFI: 11**

Death before d30: 4***

* p<0.05

** ns

Empirical Antifungal therapy
n=207

Treated: 76 (37%)*

Proven IFI: 16 **

Death before d30: 13***

*** p=.03
A randomized comparison between empirical vs. pre-emptive antifungal strategy in high-risk neutropenic patients
The “Prevert” study

Randomization at start of chemo
day 2 of fever under ATB at the latest
GM screening x 2 /week
Daily clinical evaluation

Empirical
Fever driven

Pre-emptive
Only if pneumonia, shock, skin lesions evocative of IFI, sinusitis, orbititis, HS abscesses, grade 4 mucositis, Asp colonization, Or one GM Ag +

In both groups: Ampho B (1mg/kg/d) or liposomal Ampho B (3mg/kg/d) according to the daily assessment of the creatinin clearance

Cordonnier et al. CID 2009
<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Empiric Group (N=150)</th>
<th>Preemptive Group (N=143)</th>
<th>P Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age: Mean (SD)</td>
<td>52.0 (13.5)</td>
<td>52.1 (14.1)</td>
<td>NS</td>
</tr>
<tr>
<td>Primary Diagnosis, %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AML</td>
<td>66.0</td>
<td>68.5</td>
<td></td>
</tr>
<tr>
<td>ALL</td>
<td>5.3</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>Lymphoma / myeloma</td>
<td>26 / 2.7</td>
<td>25.2 / 4.2</td>
<td></td>
</tr>
<tr>
<td>Hematological treatment, %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Induction / relapse treatment</td>
<td>46.7 / 5.3</td>
<td>46.8 / 4.2</td>
<td></td>
</tr>
<tr>
<td>Consolidation</td>
<td>18.0</td>
<td>16.8</td>
<td></td>
</tr>
<tr>
<td>Autologous SCT (with TBI)</td>
<td>30.0 (17.8)</td>
<td>32.2 (13)</td>
<td></td>
</tr>
<tr>
<td>Mean duration of PMN<0.5 (sd)</td>
<td>20.3 (10.4)</td>
<td>20.0 (10.3)</td>
<td></td>
</tr>
<tr>
<td>Azole prophylaxis Fluco / Itra</td>
<td>11.3 / 6.7</td>
<td>13.3 / 4.2</td>
<td>NS</td>
</tr>
</tbody>
</table>
Empirical v. Preemptive antifungal therapy in high risk neutropenic patients (n = 293)

Overall survival

Primary endpoint

Proven and probable IFI

Cordonnier et al. CID 2009
Study 65091 EORTC

<table>
<thead>
<tr>
<th>Title</th>
<th>Empirical versus “pre-emptive” antifungal therapy of patients with haematological malignancies and recipients of an allogeneic HSCT following myeloablative therapy. A therapeutic phase III strategy study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sponsor</td>
<td>MSD</td>
</tr>
</tbody>
</table>

- Includes allogeneic myelo-ablative transplant
- Excludes autologous SCT and consolidation phases of AL
- Prophylaxis by Fluconazole for all the patients
- Cut-off of GM Ag to start the antifungal in the pre-emptive trial: 1 serum or plasma test > 0.5 l
Other studies on the pre-emptive approach in neutropenic patients

<table>
<thead>
<tr>
<th>Author</th>
<th>Design</th>
<th>No. Pts or episodes</th>
<th>Allo HSCT</th>
<th>Design / indication for antifungals</th>
<th>% IFI</th>
<th>Antifungal agent(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Girmenia</td>
<td>Observational</td>
<td>220 ep.</td>
<td>0</td>
<td>Intensive diagnosis work-up if fever > 4d or recurrent fever (3 consecutive daily GM, chest CT)</td>
<td>24%</td>
<td>5 different drugs</td>
</tr>
<tr>
<td>JCO 2009</td>
<td>Single center</td>
<td>In 146 pts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barnes</td>
<td>«</td>
<td>125 pts</td>
<td>18%</td>
<td>GM and PCR x2/w</td>
<td>33.6%</td>
<td>Caspo / L-AmB/Vori</td>
</tr>
<tr>
<td>JCP 2009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aguilar-Guisado</td>
<td>«</td>
<td>347 ep. in 66 pts</td>
<td>13.6%</td>
<td>Clinically driven (sepsis/shock, lung, CNS, sinus, abdominal, skin)</td>
<td>4.5%</td>
<td>4 different drugs</td>
</tr>
<tr>
<td>BMT 2009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dignan</td>
<td>Retrospective</td>
<td>99 pts</td>
<td>All, 63 RIC</td>
<td>Chest CT at 72h of fever, then every 10-14 days</td>
<td>4%</td>
<td>Caspo → L-AmB or Vori</td>
</tr>
<tr>
<td>BMT 2009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pagano</td>
<td>Observational</td>
<td>397 pts</td>
<td>+</td>
<td>GM and CT-scan</td>
<td>23.7%</td>
<td>5 different drugs or combination</td>
</tr>
<tr>
<td>Haematologica 2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evaluation on practice of empirical versus pre-emptive therapy: the HEMA @-Chart project
Pagano et al. 2011

Observational study in 23 italian centers, 2007-2009
397 Pts, AL, 1st induction mainly, autologous and allogeneic SCT
Under antiF prophylaxis: 48% in E, 58% in PE
« Almost identical diagnostic work-up », multiple ATF, possible bias

<table>
<thead>
<tr>
<th></th>
<th>Empiric N=190</th>
<th>Preemptive N=207</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proven+probable IFD</td>
<td>7.4%</td>
<td>23.7%</td>
<td><.001</td>
</tr>
<tr>
<td>Mould infections</td>
<td>7</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Overall d90 mortality</td>
<td>6.3%</td>
<td>15.9%</td>
<td>.002</td>
</tr>
</tbody>
</table>
Finally, PNEUMONIA, much more than GM+, is often the main criteria to start ATFs in pre-emptive studies.

<table>
<thead>
<tr>
<th>Author</th>
<th>No. PE Pts or episodes/No. Total Pts</th>
<th>Criteria fixed by study design</th>
<th>Criteria to start ATF among pts who received ATFs</th>
</tr>
</thead>
</table>
| Cordonnier 2009 | 143 / 293 | GM or clinical criteria | Pneumonia 46.4%
| | | | Severe mucositis 17.9%
| | | | GM +-alone 5.4% |
| Aguilar-Guisado 2009 | 347 | Clinical criteria only | Shock 34.6%
| | | | Pneumonia 19%
| | | | Other focus 11.5% |
| Pagano 2011 | 207 / 397 | # GM or CT Scan or multisite colonization | CT-scan + GM+ 78%
| | | | 16% |
Pre-emptive approach in practice: When to do a CT-scan

- A new cough, chest pain or hemoptysis
- An abnormal chest radiograph
- A positive culture for *Aspergillus* or other mold from any site
- Microscopic evidence of hyphae in any invasive sample
- Unresolved temperature after 7 days of antibiotics and/or antifungals

Guidelines from the British Society for Medical Mycology- Denning et al. Lancet Infect Dis 2003; 3: 230

And of course, in case of *Positive Galactomannan/ β-D-glucan/PCR assay(s)*
Pre-emptive antifungal therapy …

….. alternative to prophylaxis …

… should costs be the main driver..

… moving towards a more rational, tailored approach to the management of IA
CONCLUSION: Do not give empirical antifungals anymore

The pre-emptive approach with GM and CT-scan:

- is elegant
- is a logical approach as far as IA Is the main concern
- reduces the use of antifungals
- reduces antifungal costs and saves money for the lab

New markers to be explored for unclassical IFI